D-Amino acid residues, found in countless peptides and natural products including ribosomally synthesized and post-translationally modified peptides (RiPPs), are critical for the bioactivity of several antibiotics and toxins. Recently, radical S-adenosyl-L-methionine (SAM) enzymes have emerged as the only biocatalysts capable of installing direct and irreversible epimerization in RiPPs. However, the mechanism underpinning this biochemical process is ill-understood and the structural basis for this post-translational modification remains unknown.
View Article and Find Full Text PDFB -dependent radical SAM enzymes are an emerging enzyme family with approximately 200,000 proteins. These enzymes have been shown to catalyze chemically challenging reactions such as methyl transfer to sp2- and sp3-hybridized carbon atoms. However, to date we have little information regarding their complex mechanisms and their biosynthetic potential.
View Article and Find Full Text PDFThe human microbiota plays a central role in human physiology. This complex ecosystem is a promising but untapped source of bioactive compounds and antibiotics that are critical for its homeostasis. However, we still have a very limited knowledge of its metabolic and biosynthetic capabilities.
View Article and Find Full Text PDFThe activation of G proteins by G protein-coupled receptors (GPCRs) underlies the majority of transmembrane signaling by hormones and neurotransmitters. Recent structures of GPCR-G protein complexes obtained by crystallography and cryoelectron microscopy (cryo-EM) reveal similar interactions between GPCRs and the alpha subunit of different G protein isoforms. While some G protein subtype-specific differences are observed, there is no clear structural explanation for G protein subtype-selectivity.
View Article and Find Full Text PDFA series of G protein peptidomimetics were designed and synthesised based on the published X-ray crystal structure of the active state β-adrenergic receptor (βAR) in complex with the G protein (PDB 3SN6). We hypothesised that such peptidomimetics may function as allosteric modulators that target the intracellular G protein binding site of the βAR. Peptidomimetics were designed to mimic the 15 residue C-terminal α-helix of the G protein and were pre-organised in a helical conformation by (, + 4)-stapling using copper catalysed azide alkyne cycloaddition.
View Article and Find Full Text PDFRibosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of bioactive peptides. Among RiPPs, the bacterial toxin polytheonamide A is characterized by a unique set of post-translational modifications catalyzed by novel radical S-adenosyl-l-methionine (SAM) enzymes. Here we show that the radical SAM enzyme PoyD catalyzes in vitro polytheonamide epimerization in a C-to-N directional manner.
View Article and Find Full Text PDFRadical -adenosylmethionine (SAM) enzymes are emerging as a major superfamily of biological catalysts involved in the biosynthesis of the broad family of bioactive peptides called ribosomally synthesized and post-translationally modified peptides (RiPPs). These enzymes have been shown to catalyze unconventional reactions, such as methyl transfer to electrophilic carbon atoms, sulfur to C atom thioether bonds, or carbon-carbon bond formation. Recently, a novel radical SAM enzyme catalyzing the formation of a lysine-tryptophan bond has been identified in , and a reaction mechanism has been proposed.
View Article and Find Full Text PDFBackground And Purpose: The arylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes that play an important role in the detoxification and/or bioactivation of arylamine drugs and xenobiotics. In bacteria, NATs may contribute to the resistance against antibiotics such as isoniazid or sulfamides through their acetylation, which makes this enzyme family a possible drug target. Bacillus anthracis, a bacterial species of clinical significance, expresses three NAT isozymes with distinct structural and enzymatic properties, including an inactive isozyme ((BACAN)NAT3).
View Article and Find Full Text PDFArylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes that catalyze the acetyl-CoA-dependent acetylation of arylamines. To better understand the mode of binding of the cofactor by this family of enzymes, the structure of Mesorhizobium loti NAT1 [(RHILO)NAT1] was determined in complex with CoA. The F42W mutant of (RHILO)NAT1 was used as it is well expressed in Escherichia coli and displays enzymatic properties similar to those of the wild type.
View Article and Find Full Text PDFMycobacterium abscessus is the most pathogenic rapid-growing mycobacterium and is one of the most resistant organisms to chemotherapeutic agents. However, structural and functional studies of M. abscessus proteins that could modify/inactivate antibiotics remain nonexistent.
View Article and Find Full Text PDFThis letter is a comment on Zhou . (2013). Arylamine N-acetyltransferases: a structural perspective.
View Article and Find Full Text PDFArylamine N-acetyltransferases (NATs), a class of xenobiotic-metabolizing enzymes, catalyze the acetylation of aromatic amine compounds through a strictly conserved Cys-His-Asp catalytic triad. Each residue is essential for catalysis in both prokaryotic and eukaryotic NATs. Indeed, in (HUMAN)NAT2 variants, mutation of the Asp residue to Asn, Gln, or Glu dramatically impairs enzyme activity.
View Article and Find Full Text PDFIntroduction: Arylamine N-acetyltransferases (NATs) are polymorphic xenobiotic metabolizing enzymes catalyzing the acetylation of aromatic amine chemicals of pharmacological/toxicological relevance (drugs, carcinogens). NATs are primordial determinants of the detoxification and/or bioactivation of these compounds. These enzymes are found in prokaryotes and eukaryotes.
View Article and Find Full Text PDFLegionella pneumophila is an opportunistic pathogen and the causative agent of Legionnaires' disease. Despite being exposed to many chemical compounds in its natural and man-made habitats (natural aquatic biotopes and man-made water systems), L. pneumophila is able to adapt and survive in these environments.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
February 2012
Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes (XMEs) that catalyze the acetylation of arylamines. All functional NATs described to date possess a strictly conserved Cys-His-Asp catalytic triad. Here, the purification, crystallization and preliminary X-ray characterization of Bacillus cereus arylamine N-acetyltransferase 3 [(BACCR)NAT3], a putative NAT isoenzyme that possesses a unique catalytic triad containing a glutamate residue, is reported.
View Article and Find Full Text PDFArylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes that biotransform arylamine drugs. The Bacillus anthracis (BACAN)NAT1 enzyme affords increased resistance to the antibiotic sulfamethoxazole through its acetylation. We report the structure of (BACAN)NAT1.
View Article and Find Full Text PDF