Publications by authors named "Xavier Gaume"

In mouse embryonic stem cells (mESCs), chemical blockade of Gsk3α/β and Mek1/2 (2i) instructs a self-renewing ground state whose endogenous inducers are unknown. Here we show that the axon guidance cue Netrin-1 promotes naive pluripotency by triggering profound signalling, transcriptomic and epigenetic changes in mESCs. Furthermore, we demonstrate that Netrin-1 can substitute for blockade of Gsk3α/β and Mek1/2 to sustain self-renewal of mESCs in combination with leukaemia inhibitory factor and regulates the formation of the mouse pluripotent blastocyst.

View Article and Find Full Text PDF

Pluripotent stem cells are thought of as a surrogate of early developmental stages that sustain the capacity to generate all cell types in the body, thereby constituting an invaluable tool to address the mechanisms underlying cellular plasticity. In the mouse, cells resembling totipotent 2-cell-stage embryos (2-cell-like cells) arise at a very low frequency in embryonic stem cell (ESC) cultures. However, the extent to which these early-embryonic-like cells recapitulate the molecular features of the early embryo is unclear.

View Article and Find Full Text PDF

Understanding general principles that safeguard cellular identity should reveal critical insights into common mechanisms underlying specification of varied cell types. Here, we show that SUMO modification acts to stabilize cell fate in a variety of contexts. Hyposumoylation enhances pluripotency reprogramming in vitro and in vivo, increases lineage transdifferentiation, and facilitates leukemic cell differentiation.

View Article and Find Full Text PDF

Unlike pluripotent cells, which generate only embryonic tissues, totipotent cells can generate a full organism, including extra-embryonic tissues. A rare population of cells resembling 2-cell-stage embryos arises in pluripotent embryonic stem (ES) cell cultures. These 2-cell-like cells display molecular features of totipotency and broader developmental plasticity.

View Article and Find Full Text PDF

Nucleolin is an essential protein that plays important roles in the regulation of cell cycle and cell proliferation. Its expression is up regulated in many cancer cells but its molecular functions are not well characterized. Nucleolin is present in the nucleus where it regulates gene expression at the transcriptional and post-transcriptional levels.

View Article and Find Full Text PDF

Nucleolin is present in diverse cellular compartments and is involved in a variety of cellular processes from nucleolar structure and function to intracellular trafficking, cell adhesion and migration. Recently, nucleolin has been localized at the mature centriole where it is involved in microtubule nucleation and anchoring. Although this new function of nucleolin linked to microtubule regulation has been identified, the global effects of nucleolin on microtubule dynamics have not been addressed yet.

View Article and Find Full Text PDF

Early embryonic cells are totipotent and can generate a complete organism including embryonic and extraembryonic tissues. After division, cells lose their potency as they move toward a pluripotent state characterized by decreased cellular plasticity. During this transition, drastic changes in transcriptional programs occur in parallel with global chromatin reorganization.

View Article and Find Full Text PDF

Nucleolin (NCL) is one of the most abundant non ribosomal protein of the nucleolus where it plays a central role in polymerase I transcription. NCL is also found outside of the nucleolus, in the nucleoplasm, cytoplasm as well as on the cell membrane. It acts in all cell compartments to control cellular homeostasis and therefore each cellular pool of NCL can play a different role in cancer development.

View Article and Find Full Text PDF

Nucleolin is a pleiotropic protein involved in a variety of cellular processes. Although multipolar spindle formation has been observed after nucleolin depletion, the roles of nucleolin in centrosome regulation and functions have not been addressed. Here we report using immunofluorescence and biochemically purified centrosomes that nucleolin co-localized only with one of the centrioles during interphase which was further identified as the mature centriole.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) infection induces profound nucleolar modifications at the functional and organizational levels, including nucleolar invasion by several viral proteins. One of these proteins is US11, which exhibits several different functions and displays both cytoplasmic localization and clear nucleolar localization very similar to that of the major multifunctional nucleolar protein nucleolin. To determine whether US11 interacts with nucleolin, we purified US11 protein partners by coimmunoprecipitations using a tagged protein, Flag-US11.

View Article and Find Full Text PDF

Nucleolin is a major nucleolar protein involved in various aspects of ribosome biogenesis such as regulation of polymerase I transcription, pre-RNA maturation, and ribosome assembly. Nucleolin is also present in the nucleoplasm suggesting that its functions are not restricted to nucleoli. Nucleolin possesses, in vitro, chromatin co-remodeler and histone chaperone activities which could explain numerous functions of nucleolin related to the regulation of gene expression.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionofu2rtb89mffn4rju70mqgjgeei5c5ap): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once