A combination of Δ-tetrahydrocannabinol (Δ-THC) and cannabidiol (CBD) at non-psychoactive doses was previously demonstrated to reduce cognitive decline in APP/PS1 mice, an animal model of Alzheimer's disease (AD). However, the neurobiological substrates underlying these therapeutic properties of Δ-THC and CBD are not fully understood. Considering that dysregulation of glutamatergic activity contributes to cognitive impairment in AD, the present study evaluates the hypothesis that the combination of these two natural cannabinoids might reverse the alterations in glutamate dynamics within the hippocampus of this animal model of AD.
View Article and Find Full Text PDFThe early failure of glaucoma surgery is mainly caused by over-fibrosis at the subconjunctival space, causing obliteration of the filtration bleb. Because fibrosis has a suspected basis of genetic predisposition, we have undertaken a prospective study to identify upregulated profibrotic genes in a population of glaucoma patients with signs of conjunctival fibrosis and early postoperative surgical failure. Clinical data of re-operated fibrosis patients, hyperfibrosis patients who re-operated more than once in a short time, and control patients with no fibrosis were recorded and analyzed at each follow-up visit.
View Article and Find Full Text PDFThe trabecular meshwork (TM) route is the principal outflow egress of the aqueous humor. Actin cytoskeletal remodeling in the TM and extracellular matrix (ECM) deposition increase TM stiffness, outflow resistance, and elevate intraocular pressure (IOP). These alterations are strongly linked to transforming growth factor-β2 (TGFβ2), a known profibrotic cytokine that is markedly elevated in the aqueous humor of glaucomatous eyes.
View Article and Find Full Text PDFBy endowing light control of neuronal activity, optogenetics and photopharmacology are powerful methods notably used to probe the transmission of pain signals. However, costs, animal handling and ethical issues have reduced their dissemination and routine use. Here we report LAKI (Light Activated K channel Inhibitor), a specific photoswitchable inhibitor of the pain-related two-pore-domain potassium TREK and TRESK channels.
View Article and Find Full Text PDFPatients with obstructive sleep apnea (OSA) experience recurrent hypoxemic events with a frequency sometimes exceeding 60 events/h. These episodic events induce downstream transient hypoxia in the parenchymal tissue of all organs, thereby eliciting the pathological consequences of OSA. Whereas experimental models currently apply intermittent hypoxia to cells conventionally cultured in 2D plates, there is no well-characterized setting that will subject cells to well-controlled intermittent hypoxia in a 3D environment and enable the study of the effects of OSA on the cells of interest while preserving the underlying tissue environment.
View Article and Find Full Text PDFIn the last two decades, microglia have emerged as key contributors to disease progression in many neurological disorders, not only by exerting their classical immunological functions but also as extremely dynamic cells with the ability to modulate synaptic and neural activity. This dynamic behavior, together with their heterogeneous roles and response to diverse perturbations in the brain parenchyma has raised the idea that microglia activation is more diverse than anticipated and that understanding the molecular mechanisms underlying microglial states is essential to unravel their role in health and disease from development to aging. The Ikzf1 (a.
View Article and Find Full Text PDFObjective: The encephalitis associated with antibodies against contactin-associated proteinlike 2 (CASPR2) is presumably antibody-mediated, but the antibody effects and whether they cause behavioral alterations are not well known. Here, we used a mouse model of patients' immunoglobulin G (IgG) transfer and super-resolution microscopy to demonstrate the antibody pathogenicity.
Methods: IgG from patients with anti-CASPR2 encephalitis or healthy controls was infused into the cerebroventricular system of mice.
Obesity and type 2 diabetes are associated with cognitive dysfunction. Because the hypothalamus is implicated in energy balance control and memory disorders, we hypothesized that specific neurons in this brain region are at the interface of metabolism and cognition. Acute obesogenic diet administration in mice impaired recognition memory due to defective production of the neurosteroid precursor pregnenolone in the hypothalamus.
View Article and Find Full Text PDFAge-related eye diseases, including dry eye, glaucoma, age-related macular degeneration, and diabetic retinopathy, represent a major global health issue based on their increasing prevalence and disabling action. Unraveling the molecular mechanisms underlying these diseases will provide novel opportunities to reduce the burden of age-related eye diseases and improve eye health, contributing to sustainable development goals achievement. The impairment of neutrophil extracellular traps formation/degradation processes seems to be one of these mechanisms.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
January 2022
Background And Objectives: To demonstrate that an analog (SGE-301) of a brain-derived cholesterol metabolite, 24(S)-hydroxycholesterol, which is a selective positive allosteric modulator (PAM) of NMDA receptors (NMDARs), is able to reverse the memory and synaptic alterations caused by CSF from patients with anti-NMDAR encephalitis in an animal model of passive transfer of antibodies.
Methods: Four groups of mice received (days 1-14) patients' or controls' CSF via osmotic pumps connected to the cerebroventricular system and from day 11 were treated with daily subcutaneous injections of SGE-301 or vehicle (no drug). Visuospatial memory, locomotor activity (LA), synaptic NMDAR cluster density, hippocampal long-term potentiation (LTP), and paired-pulse facilitation (PPF) were assessed on days 10, 13, 18, and 26 using reported techniques.
Volume-regulated anion channel (VRAC), constituted by leucine-rich repeat-containing 8 (LRRC8) heteromers, is crucial for volume homeostasis in vertebrate cells. This widely expressed channel has been associated with membrane potential modulation, proliferation, migration, apoptosis, and glutamate release. VRAC is activated by cell swelling and by low cytoplasmic ionic strength or intracellular guanosine 5'--(3-thiotriphosphate) (GTP-γS) in isotonic conditions.
View Article and Find Full Text PDFMegalencephalic Leukoencephalopathy with subcortical Cysts (MLC) is a type of vacuolating leukodystrophy, which is mainly caused by mutations in MLC1 or GLIALCAM. The two MLC-causing genes encode for membrane proteins of yet unknown function that have been linked to the regulation of different chloride channels such as the ClC-2 and VRAC. To gain insight into the role of MLC proteins, we have determined the brain GlialCAM interacting proteome.
View Article and Find Full Text PDFBackground: RTP801/REDD1 is a stress-regulated protein whose upregulation is necessary and sufficient to trigger neuronal death in in vitro and in vivo models of Parkinson's and Huntington's diseases and is up regulated in compromised neurons in human postmortem brains of both neurodegenerative disorders. Indeed, in both Parkinson's and Huntington's disease mouse models, RTP801 knockdown alleviates motor-learning deficits.
Results: We investigated the physiological role of RTP801 in neuronal plasticity and we found RTP801 in rat, mouse and human synapses.
Objective: The objective of this study was to report the identification of antibodies against the glutamate kainate receptor subunit 2 (GluK2-abs) in patients with autoimmune encephalitis, and describe the clinical-immunological features and antibody effects.
Methods: Two sera from 8 patients with similar rat brain immunostaining were used to precipitate the antigen from neuronal cultures. A cell-based assay (CBA) with GluK2-expressing HEK293 cells was used to assess 596 patients with different neurological disorders, and 23 healthy controls.
Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is an immune-mediated disease characterized by a complex neuropsychiatric syndrome in association with an antibody-mediated decrease of NMDAR. About 85% of patients respond to immunotherapy (and removal of an associated tumour if it applies), but it often takes several months or more than 1 year for patients to recover. There are no complementary treatments, beyond immunotherapy, to accelerate this recovery.
View Article and Find Full Text PDFTRESK belongs to the K family of potassium channels, also known as background or leak potassium channels due to their biophysical properties and their role regulating membrane potential of cells. Several studies to date have highlighted the role of TRESK in regulating the excitability of specific subtypes of sensory neurons. These findings suggest TRESK could be involved in pain sensitivity.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFAMPARs control fast synaptic communication between neurons and their function relies on auxiliary subunits, which importantly modulate channel properties. Although it has been suggested that AMPARs can bind to TARPs with variable stoichiometry, little is known about the effect that this stoichiometry exerts on certain AMPAR properties. Here we have found that AMPARs show a clear stoichiometry-dependent modulation by the prototypical TARP γ2 although the receptor still needs to be fully saturated with γ2 to show some typical TARP-induced characteristics (i.
View Article and Find Full Text PDFKey Points: TRESK background K channel is expressed in sensory neurons and acts as a brake to reduce neuronal activation. Deletion of the channel enhances the excitability of nociceptors. Skin nociceptive C-fibres show an enhanced activation by cold and mechanical stimulation in TRESK knockout animals.
View Article and Find Full Text PDFAutosomal dominant mutations in are associated with severe encephalopathy, but little is known about the pathophysiological outcomes and any potential therapeutic interventions. Genetic studies have described the association between de novo mutations of genes encoding the subunits of the -methyl-d-aspartate receptor (NMDAR) and severe neurological conditions. Here, we evaluated a missense mutation in , causing a proline-to-threonine switch (P553T) in the GluN2B subunit of NMDAR, which was found in a 5-year-old patient with Rett-like syndrome with severe encephalopathy.
View Article and Find Full Text PDFRegulation of cellular volume is an essential process to balance volume changes during cell proliferation and migration or when intracellular osmolality increases due to transepithelial transport. We previously characterized the key role of volume-regulated anion channels (VRAC) in the modulation of the volume of trabecular meshwork (TM) cells and, in turn, the aqueous humour (AH) outflow from the eye. The balance between the secretion and the drainage of AH determines the intraocular pressure (IOP) that is the major casual risk factor for glaucoma.
View Article and Find Full Text PDFIt is often unclear why some genetic mutations to a given gene contribute to neurological disorders and others do not. For instance, two mutations have previously been found to produce a dominant negative for TRESK, a two-pore-domain K+ channel implicated in migraine: TRESK-MT, a 2-bp frameshift mutation, and TRESK-C110R. Both mutants inhibit TRESK, but only TRESK-MT increases sensory neuron excitability and is linked to migraine.
View Article and Find Full Text PDFLeucine-rich glioma-inactivated 1 (LGI1) is a secreted neuronal protein that forms a trans-synaptic complex that includes the presynaptic disintegrin and metalloproteinase domain-containing protein 23 (ADAM23), which interacts with voltage-gated potassium channels Kv1.1, and the postsynaptic ADAM22, which interacts with AMPA receptors. Human autoantibodies against LGI1 associate with a form of autoimmune limbic encephalitis characterized by severe but treatable memory impairment and frequent faciobrachial dystonic seizures.
View Article and Find Full Text PDFIn neurons, AMPA receptor (AMPAR) function depends essentially on their constituent components:the ion channel forming subunits and ion channel associated proteins. On the other hand, AMPAR trafficking is tightly regulated by a vast number of intracellular neuronal proteins that bind to AMPAR subunits. It has been recently shown that the interaction between the GluA1 subunit of AMPARs and carnitine palmitoyltransferase 1C (CPT1C), a novel protein partner of AMPARs, is important in modulating surface expression of these ionotropic glutamate receptors.
View Article and Find Full Text PDF