The sulfate-reduction process plays a crucial role in the biological valorization of SO gases. However, a complete understanding of the sulfidogenic process in bioreactors is limited by the lack of technologies for characterizing the sulfate-reducing activity of immobilized biomass. In this work, we propose a flow-cell bioreactor (FCB) for characterizing sulfate-reducing biomass using HS microsensors to monitor HS production in real-time within a biofilm.
View Article and Find Full Text PDFAn up-flow anaerobic sludge blanket (UASB) reactor targeting sulfate reduction was operated under a constant TOC/S-SO ratio of 1.5 ± 0.3 g C/g S for 639 days using crude glycerol as carbon source.
View Article and Find Full Text PDFNitrogen oxides (NO), including nitrogen monoxide (NO) and nitrogen dioxide (NO), are among the most important global atmospheric pollutants because they have a negative impact on human respiratory health, animals, and the environment through the greenhouse effect and ozone layer destruction. NO compounds are predominantly generated by anthropogenic activities, which involve combustion processes such as energy production, transportation, and industrial activities. The most widely used alternatives for NO abatement on an industrial scale are selective catalytic and non-catalytic reductions; however, these alternatives have high costs when treating large air flows with low pollutant concentrations, and most of these methods generate residues that require further treatment.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2023
This work presents a novel bioscrubber configuration for the treatment of high ammonia loads at short contact times. The biological reactor was designed to work as a moving-bed biofilm rector (MBBR) increasing biomass retention time. This configuration is still unexplored for the treatment of waste gases.
View Article and Find Full Text PDFAmmonia emissions are found in a wide range of facilities such as wastewater treatment plants, composting plants, pig houses, as well as the fertilizer, food and metallurgy industries. Effective management of these emissions is important for minimizing the detrimental effects they can have on health and the environment. Physical-chemical (thermal oxidation, absorption, catalytic oxidation, etc.
View Article and Find Full Text PDFFlue gases contain SO and NO that can be treated together for elemental sulphur recovery in bioscrubbers, a technology that couples physical-chemical and biological processes for gaseous emissions treatment in a more economic manner than classical absorption. Sequential wet absorption of SO and NO from flue gas is thoroughly studied in this work in a two-stage bioscrubber towards elemental sulphur valorisation pursuing reuse of biological process effluents as absorbents. The optimal operating conditions required for SO and NO absorption in two consecutive spray absorbers were defined using NaOH-based absorbents.
View Article and Find Full Text PDFExperimental data showed that high-speed microsprays can effectively disrupt biofilms on their support substratum, producing a variety of dynamic reactions such as elongation, displacement, ripple formation, and fluidization. However, the mechanics underlying the impact of high-speed turbulent flows on biofilm structure is complex under such extreme conditions, since direct measurements of viscosity at these high shear rates are not possible using dynamic testing instruments. Here, we used computational fluid dynamics simulations to assess the complex fluid interactions of ripple patterning produced by high-speed turbulent air jets impacting perpendicular to the surface of biofilms, a dental pathogen causing caries, captured by high-speed imaging.
View Article and Find Full Text PDFA novel sensing device for simultaneous dissolved oxygen (DO) and pH monitoring specially designed for biofilm profiling is presented in this work. This device enabled the recording of instantaneous DO and pH dynamic profiles within biofilms, improving the tools available for the study and the characterization of biological systems. The microsensor consisted of two parallel arrays of microelectrodes.
View Article and Find Full Text PDFKnowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm).
View Article and Find Full Text PDFRespirometry was used to reveal the mechanisms involved in aerobic biological sulfide oxidation and to characterize the kinetics and stoichiometry of a microbial culture obtained from a desulfurizing biotrickling filter. Physical-chemical processes such as stripping and chemical oxidation of hydrogen sulfide were characterized since they contributed significantly to the conversions observed in respirometric tests. Mass transfer coefficient for hydrogen sulfide and the kinetic parameters for chemical oxidation of sulfide with oxygen were estimated.
View Article and Find Full Text PDFBiotrickling filters for biogas desulfurization still must prove their stability and robustness in the long run under extreme conditions. Long-term desulfurization of high loads of H2S under acidic pH was studied in a lab-scale aerobic biotrickling filter packed with metallic Pall rings. Reference operating conditions at steady-state corresponded to an empty bed residence time (EBRT) of 130s, H2S loading rate of 52gS-H2Sm(-3)h(-1) and pH 2.
View Article and Find Full Text PDFAnoxic respirometry was applied to characterize a sulfide-oxidizing nitrate-reducing (SO-NR) culture obtained from an anoxic biogas desulfurizing biotrickling filter treating high loads of H2S. Immobilized biomass extracted from the biotrickling filter was grown in a suspended culture with thiosulfate as electron donor to obtain the biomass growth yield and the S2O3(2)(-)/NO3(-) consumed ratio. Afterward, respirometry was applied to describe thiosulfate oxidation under anoxic conditions.
View Article and Find Full Text PDFExcess biomass buildup in biotrickling filters leads to low performance. The effect of biomass accumulation in a biotrickling filter (BTF) packed with polyurethane foam (PUF) was assessed in terms of hydrodynamics and void space availability in a system treating dimethyl disulfide (DMDS) vapors with an alkaliphilic consortium. A sample of colonized support from a BTF having been operating for over a year was analyzed, and it was found that the BTF void bed fraction was reduced to almost half of that calculated initially without biomass.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2015
Biodegradation process modeling is an essential tool for the optimization of biotechnologies related to gaseous pollutant treatment. In these technologies, the predominant role of biofilm, particularly under conditions of no mass transfer limitations, results in a need to determine what processes are occurring within the same. By measuring the interior of the biofilms, an increased knowledge of mass transport and biodegradation processes may be attained.
View Article and Find Full Text PDFThe purpose of this work was to evaluate the technical and economical feasibility of converting three chemical scrubbers in series to biotrickling filters (BTFs) for the simultaneous removal of H2S and volatile organic compounds (VOCs). The conversion of the full-scale scrubbers was based on previous conversion protocols. Conversion mainly required replacing the original carrier material and recycle pumps as well as modifying the controls and operation of the reactors.
View Article and Find Full Text PDFMonitoring the biological activity in biotrickling filters is difficult since it implies estimating biomass concentration and its growth yield, which can hardly be measured in immobilized biomass systems. In this study, the characterization of a sulfide-oxidizing nitrate-reducing biomass obtained from an anoxic biotrickling filter was performed through the application of respirometric and titrimetric techniques. Previously, the biomass was maintained in a continuous stirred tank reactor under steady-state conditions resulting in a growth yield of 0.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
June 2014
Prediction of breakthrough curves for continuous sorption characterization is generally performed by means of simple and simplified equations. These expressions hardly have any physical meaning and, also do not allow extrapolation. A novel and simple approach, based on unsteady state mass balances, is presented herein for the simulation of the adsorption of Cr(III) ions from aqueous onto a low-cost adsorbent (leonardite).
View Article and Find Full Text PDFPall rings, a common random packing material, were used in the biotrickling filtration of biogas with high H2S. Assessment of 600d of operation covered the reactor start-up, the operation at neutral pH and the transition from neutral to acid pH. During the start-up period, operational parameters such as the aeration rate and the trickling liquid velocity were optimized.
View Article and Find Full Text PDFBiological removal of reduced sulfur compounds in energy-rich gases is an increasingly adopted alternative to conventional physicochemical processes, because of economical and environmental benefits. A lab-scale biotrickling filter reactor for the treatment of high-H(2)S-loaded gases was developed and previously proven to effectively treat H(2)S concentrations up to 12,000 ppm(v) at gas contact times between 167 and 180 s. In the present work, a detailed study on selected operational aspects affecting this system was carried out with the objective to optimize performance.
View Article and Find Full Text PDFThe presence of water in a biofilter is critical in keeping microorganisms active and abating pollutants. In addition, the amount of water retained in a biofilter may drastically affect the physical properties of packing materials and packed beds. In this study, the influence of water on the pressure drop and sorption capacities of 10 different packing materials were experimentally studied and compared.
View Article and Find Full Text PDFThe diversity and spatial distribution of bacteria in a lab-scale biotrickling filter treating high loads of hydrogen sulfide (H(2)S) were investigated. Diversity and community structure were studied by terminal-restriction fragment length polymorphism (T-RFLP). A 16S rRNA gene clone library was established.
View Article and Find Full Text PDFA kinetic model for the elemental sulfur and sulfate production from the autotrophic sulfide oxidation has been proposed. It is based on two kinetic equations able to describe the simultaneous microbial consumption of oxygen and sulfide (OUR and SUR) as a function of a particular sulfide-oxidizing microorganism or its physiological state, these can be characterized by the assessment of their kinetic constants. The respirometric technique allowed to estimate the dynamic experimental OUR and SUR profiles, which were used to calibrate the kinetic model.
View Article and Find Full Text PDFA comprehensive study of long-term ammonia removal in a biofilter packed with coconut fiber is presented under both steady-state and transient conditions. Low and high ammonia loads were applied to the reactor by varying the inlet ammonia concentration from 90 to 260 ppm(v) and gas contact times ranging from 20 to 36 s. Gas samples and leachate measurements were periodically analyzed and used for characterizing biofilter performance in terms of removal efficiency (RE) and elimination capacity (EC).
View Article and Find Full Text PDFRemoval of hydrogen sulfide from waste and energy-rich gases is required, not only because of environmental health and safety reasons, but also because of operational reasons if such gases have to be used for energy generation. A biotrickling filter for the removal of ultra-high concentrations of H2S from oxygen-poor gases is proposed and studied in this work. Two laboratory-scale biotrickling filters were used to study the startup period and to determine the long-term performance of the gas sweetening process.
View Article and Find Full Text PDF