Identifying the mechanisms that contribute to the variability of suspended particulate matter concentrations in coastal areas is important but difficult, especially due to the complexity of physical and biogeochemical interactions involved. Our study addresses this complexity and investigates changes in the horizontal spread and composition of particles, focusing on cross-coastal gradients in the southern North Sea and the English Channel. A semi-empirical model is applied on in situ data of SPM and its organic fraction to resolve the relationship between organic and inorganic suspended particles.
View Article and Find Full Text PDFThe high temporal and spatial variability of tidal dominated coastal areas poses a challenge for characterising water quality. Water quality monitoring relies often on information collected by water sampling from a vessel or by satellites, and covers limited time periods and therefore limited tidal and meteorological conditions. To assess the loss of information from discrete sampling, continuous time series of one year (suspended particulate matter (SPM) concentration, SPM flux and Chlorophyll a (Chl) concentration) were used.
View Article and Find Full Text PDFInterplays between microalgae and clay minerals enhance biologically mediated flocculation, thereby affecting the sedimentation and transportation of suspended particulate matter (SPM) in water and benthic environments. This interaction forms larger flocs with a higher settling velocity and enhances SPM sinking. The aim of this study was to investigate the flocculation kinetics of microalgae and clay in suspension and to elucidate the mechanisms associated with such interactions.
View Article and Find Full Text PDFThe Belgian Phytoplankton Database (BPD) is a comprehensive data collection comprising quantitative phytoplankton cell counts from multiple research projects conducted since 1968. The collection is focused on the Belgian part of the North Sea, but also includes data from the French and the Dutch part of the North Sea. The database includes almost 300 unique sampling locations and more than 3,000 sampling events resulting in more than 86,000 phytoplankton cell count records.
View Article and Find Full Text PDFSince 1950, increase in nitrogen (N) and phosphorus (P) river loadings in the North-East Atlantic (NEA) continental seas has induced a deep change in the marine coastal ecosystems, leading to eutrophication symptoms in some areas. In order to recover a Good Ecological Status (GES) in the NEA, as required by European Water Framework Directive (WFD) and Marine Strategy Framework Directive (MSFD), reductions in N- and P-river loadings are necessary but they need to be minimal due to their economic impact on the farming industry. In the frame of the "EMoSEM" European project, we used two marine 3D ecological models (ECO-MARS3D, MIRO&CO) covering the Bay of Biscay, the English Channel and the southern North Sea to estimate the contributions of various sources (riverine, oceanic and atmospheric) to the winter nitrate and phosphate marine concentrations.
View Article and Find Full Text PDF