Publications by authors named "Xavier De La Cruz"

Next-generation sequencing (NGS) has revolutionized genetic diagnostics, yet its application in precision medicine remains incomplete, despite significant advances in computational tools for variant annotation. Many variants remain unannotated, and existing tools often fail to accurately predict the range of impacts that variants have on protein function. This limitation restricts their utility in relevant applications such as predicting disease severity and onset age.

View Article and Find Full Text PDF

Heterochromatin stability is crucial for progenitor proliferation during early neurogenesis. It relays on the maintenance of local hubs of H3K9me. However, understanding the formation of efficient localized levels of H3K9me remains limited.

View Article and Find Full Text PDF

Continued advances in variant effect prediction are necessary to demonstrate the ability of machine learning methods to accurately determine the clinical impact of variants of unknown significance (VUS). Towards this goal, the ARSA Critical Assessment of Genome Interpretation (CAGI) challenge was designed to characterize progress by utilizing 219 experimentally assayed missense VUS in the () gene to assess the performance of community-submitted predictions of variant functional effects. The challenge involved 15 teams, and evaluated additional predictions from established and recently released models.

View Article and Find Full Text PDF
Article Synopsis
  • Establishing the pathogenicity of variants in the ATM gene is essential for patient care in hereditary cancers, yet variant classification remains challenging.
  • To tackle this, researchers developed user-friendly graphical tools that provide a comparative analysis of variants, enhancing understanding of their potential impacts.
  • These tools have been effectively applied to assess computational predictions, prioritize variants of unknown significance, and evaluate existing guidelines, with an online server (ATMision) created for broader use in variant interpretation.
View Article and Find Full Text PDF

Pathogenicity predictors are computational tools that classify genetic variants as benign or pathogenic; this is currently a major challenge in genomic medicine. With more than fifty such predictors available, selecting the most suitable tool for clinical applications like genetic screening, molecular diagnostics, and companion diagnostics has become increasingly challenging. To address this issue, we have developed a cost-based framework that naturally considers the various components of the problem.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic variants in the EZH1 chromatin modifier are linked to both dominant and recessive neurodevelopmental disorders in 19 individuals, highlighting its role in disease etiology.
  • EZH1 impacts histone modification and is essential for the differentiation of neural progenitor cells, with recessive variants causing loss of function and dominant variants resulting in gain of function due to mutations.
  • The findings underscore EZH1's crucial role in neurogenesis and offer a molecular basis for diagnosing certain neurodevelopmental disorders that were previously unclassified.
View Article and Find Full Text PDF
Article Synopsis
  • Pathogenic variants in KMT5B, a lysine methyltransferase, are linked to global developmental issues, macrocephaly, autism, and other congenital anomalies, but the disorder is still not fully understood.
  • A study examining 43 patients revealed new significant features like hypotonia and congenital heart defects not previously associated with this condition.
  • Research using patient cell lines and KMT5B knockout mice showed that these variants lead to slow growth and highlighted alterations in pathways related to nervous system development, enhancing our understanding of the disorder's molecular mechanisms.
View Article and Find Full Text PDF

PirePred is a genetic interpretation tool used for a variety of medical conditions investigated in newborn screening programs. The PirePred server retrieves, analyzes, and displays in real time genetic and structural data on 58 genes/proteins associated with medical conditions frequently investigated in the newborn. PirePred analyzes the predictions generated by 15 pathogenicity predictors and applies an optimized majority vote algorithm to classify any possible nonsynonymous single-nucleotide variant as pathogenic, benign, or of uncertain significance.

View Article and Find Full Text PDF

About 70% of advanced-stage prostate cancer (PCa) patients will experience bone metastasis, which severely affects patients' quality of life and progresses to lethal PCa in most cases. Hence, understanding the molecular heterogeneity of PCa cell populations and the signaling pathways associated with bone tropism is crucial. For this purpose, we generated an animal model with high penetrance to metastasize to bone using an intracardiac percutaneous injection of PC3 cells to identify PCa metastasis-promoting factors.

View Article and Find Full Text PDF

Angelman syndrome (AS) is a neurogenetic disorder characterized by severe developmental delay with absence of speech, happy disposition, frequent laughter, hyperactivity, stereotypies, ataxia and seizures with specific EEG abnormalities. There is a 10-15% of patients with an AS phenotype whose genetic cause remains unknown (Angelman-like syndrome, AS-like). Whole-exome sequencing (WES) was performed on a cohort of 14 patients with clinical features of AS and no molecular diagnosis.

View Article and Find Full Text PDF

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory disorder. HLH can be considered as a threshold disease depending on the trigger and the residual NK-cell cytotoxicity. In this study, we analyzed the molecular and functional impact of a novel monoallelic mutation found in a patient with two episodes of HLH.

View Article and Find Full Text PDF

The present limitations in the pathogenicity prediction of BRCA1 and BRCA2 (BRCA1/2) missense variants constitute an important problem with negative consequences for the diagnosis of hereditary breast and ovarian cancer. However, it has been proposed that the use of endophenotype predictions, i.e.

View Article and Find Full Text PDF

Epigenetic factors have been shown to play a crucial role in X-linked intellectual disability (XLID). Here, we investigate the contribution of the XLID-associated histone demethylase PHF8 to astrocyte differentiation and function. Using genome-wide analyses and biochemical assays in mouse astrocytic cultures, we reveal a regulatory crosstalk between PHF8 and the Notch signaling pathway that balances the expression of the master astrocytic gene Nfia.

View Article and Find Full Text PDF

Background: Gene panel testing by massive parallel sequencing has increased the diagnostic yield but also the number of variants of uncertain significance. Clinical interpretation of genomic data requires expertise for each gene and disease. Heterozygous ATM pathogenic variants increase the risk of cancer, particularly breast cancer.

View Article and Find Full Text PDF

Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported.

View Article and Find Full Text PDF

Primary immunodeficiencies (PIDs) are a heterogeneous group of disorders. The lack of comprehensive disease-specific mutation databases may hinder or delay classification of the genetic variants found in samples from these patients. This is especially true for familial hemophagocytic lymphohistiocytosis (FHL), a life-threatening PID classically considered an autosomal recessive condition, but with increasingly demonstrated genetic heterogeneity.

View Article and Find Full Text PDF

The presence of mutations in PRF1, UNC13D, STX11 and STXBP2 genes in homozygosis or compound heterozygosis results in immune deregulation. Most such cases lead to clinical manifestations of haemophagocytic lymphohistiocytosis (HLH). In the present study, we analyzed degranulation and cytotoxicity in a pediatric patient with a late presentation of HLH associated with Epstein-Barr virus infection.

View Article and Find Full Text PDF

Histone H3 lysine 9 methylation (H3K9me) is essential for cellular homeostasis; however, its contribution to development is not well established. Here, we demonstrate that the H3K9me2 demethylase PHF2 is essential for neural progenitor proliferation in vitro and for early neurogenesis in the chicken spinal cord. Using genome-wide analyses and biochemical assays we show that PHF2 controls the expression of critical cell cycle progression genes, particularly those related to DNA replication, by keeping low levels of H3K9me3 at promoters.

View Article and Find Full Text PDF

Testing for variation in BRCA1 and BRCA2 (commonly referred to as BRCA1/2), has emerged as a standard clinical practice and is helping countless women better understand and manage their heritable risk of breast and ovarian cancer. Yet the increased rate of BRCA1/2 testing has led to an increasing number of Variants of Uncertain Significance (VUS), and the rate of VUS discovery currently outpaces the rate of clinical variant interpretation. Computational prediction is a key component of the variant interpretation pipeline.

View Article and Find Full Text PDF

Compensated pathogenic deviations (CPDs) are sequence variants that are pathogenic in humans but neutral in other species. In recent years, our molecular understanding of CPDs has advanced substantially. For example, it is known that their impact on human proteins is generally milder than that of average pathogenic mutations and that their impact is suppressed in non-human carriers by compensatory mutations.

View Article and Find Full Text PDF

BRCA1 and BRCA2 (BRCA1/2) germline variants disrupting the DNA protective role of these genes increase the risk of hereditary breast and ovarian cancers. Correct identification of these variants then becomes clinically relevant, because it may increase the survival rates of the carriers. Unfortunately, we are still unable to systematically predict the impact of BRCA1/2 variants.

View Article and Find Full Text PDF

One of the known potential effects of disease-causing amino acid substitutions in proteins is to modulate protein-protein interactions (PPIs). To interpret such variants at the molecular level and to obtain useful information for prediction purposes, it is important to determine whether they are located at protein-protein interfaces, which are composed of two main regions, core and rim, with different evolutionary conservation and physicochemical properties. Here we have performed a structural, energetics and computational analysis of interactions between proteins hosting mutations related to diseases detected in newborn screening.

View Article and Find Full Text PDF

Polymerase γ catalytic subunit () gene encodes the enzyme responsible for mitochondrial DNA (mtDNA) synthesis. Mutations affecting are the most prevalent cause of mitochondrial disease because of defective mtDNA replication and lead to a wide spectrum of clinical phenotypes characterized by mtDNA deletions or depletion. Enhancing mitochondrial deoxyribonucleoside triphosphate (dNTP) synthesis effectively rescues mtDNA depletion in different models of defective mtDNA maintenance due to dNTP insufficiency.

View Article and Find Full Text PDF

Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorders in childhood and persists into adulthood in 40-65% of cases. Given the polygenic and heterogeneous architecture of the disorder and the limited overlap between genetic studies, there is a growing interest in epigenetic mechanisms, such as microRNAs, that modulate gene expression and may contribute to the phenotype. We attempted to clarify the role of microRNAs in ADHD at a molecular level through the first genome-wide integrative study of microRNA and mRNA profiles in peripheral blood mononuclear cells of medication-naive individuals with ADHD and healthy controls.

View Article and Find Full Text PDF

Background: Cellular cobalamin defects are a locus and allelic heterogeneous disorder. The gold standard for coming to genetic diagnoses of cobalamin defects has for some time been gene-by-gene Sanger sequencing of individual DNA fragments. Enzymatic and cellular methods are employed before such sequencing to help in the selection of the gene defects to be sought, but this is time-consuming and laborious.

View Article and Find Full Text PDF