Next-generation sequencing (NGS) has revolutionized genetic diagnostics, yet its application in precision medicine remains incomplete, despite significant advances in computational tools for variant annotation. Many variants remain unannotated, and existing tools often fail to accurately predict the range of impacts that variants have on protein function. This limitation restricts their utility in relevant applications such as predicting disease severity and onset age.
View Article and Find Full Text PDFHeterochromatin stability is crucial for progenitor proliferation during early neurogenesis. It relays on the maintenance of local hubs of H3K9me. However, understanding the formation of efficient localized levels of H3K9me remains limited.
View Article and Find Full Text PDFContinued advances in variant effect prediction are necessary to demonstrate the ability of machine learning methods to accurately determine the clinical impact of variants of unknown significance (VUS). Towards this goal, the ARSA Critical Assessment of Genome Interpretation (CAGI) challenge was designed to characterize progress by utilizing 219 experimentally assayed missense VUS in the () gene to assess the performance of community-submitted predictions of variant functional effects. The challenge involved 15 teams, and evaluated additional predictions from established and recently released models.
View Article and Find Full Text PDFPathogenicity predictors are computational tools that classify genetic variants as benign or pathogenic; this is currently a major challenge in genomic medicine. With more than fifty such predictors available, selecting the most suitable tool for clinical applications like genetic screening, molecular diagnostics, and companion diagnostics has become increasingly challenging. To address this issue, we have developed a cost-based framework that naturally considers the various components of the problem.
View Article and Find Full Text PDFPirePred is a genetic interpretation tool used for a variety of medical conditions investigated in newborn screening programs. The PirePred server retrieves, analyzes, and displays in real time genetic and structural data on 58 genes/proteins associated with medical conditions frequently investigated in the newborn. PirePred analyzes the predictions generated by 15 pathogenicity predictors and applies an optimized majority vote algorithm to classify any possible nonsynonymous single-nucleotide variant as pathogenic, benign, or of uncertain significance.
View Article and Find Full Text PDFAbout 70% of advanced-stage prostate cancer (PCa) patients will experience bone metastasis, which severely affects patients' quality of life and progresses to lethal PCa in most cases. Hence, understanding the molecular heterogeneity of PCa cell populations and the signaling pathways associated with bone tropism is crucial. For this purpose, we generated an animal model with high penetrance to metastasize to bone using an intracardiac percutaneous injection of PC3 cells to identify PCa metastasis-promoting factors.
View Article and Find Full Text PDFAngelman syndrome (AS) is a neurogenetic disorder characterized by severe developmental delay with absence of speech, happy disposition, frequent laughter, hyperactivity, stereotypies, ataxia and seizures with specific EEG abnormalities. There is a 10-15% of patients with an AS phenotype whose genetic cause remains unknown (Angelman-like syndrome, AS-like). Whole-exome sequencing (WES) was performed on a cohort of 14 patients with clinical features of AS and no molecular diagnosis.
View Article and Find Full Text PDFHemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory disorder. HLH can be considered as a threshold disease depending on the trigger and the residual NK-cell cytotoxicity. In this study, we analyzed the molecular and functional impact of a novel monoallelic mutation found in a patient with two episodes of HLH.
View Article and Find Full Text PDFThe present limitations in the pathogenicity prediction of BRCA1 and BRCA2 (BRCA1/2) missense variants constitute an important problem with negative consequences for the diagnosis of hereditary breast and ovarian cancer. However, it has been proposed that the use of endophenotype predictions, i.e.
View Article and Find Full Text PDFEpigenetic factors have been shown to play a crucial role in X-linked intellectual disability (XLID). Here, we investigate the contribution of the XLID-associated histone demethylase PHF8 to astrocyte differentiation and function. Using genome-wide analyses and biochemical assays in mouse astrocytic cultures, we reveal a regulatory crosstalk between PHF8 and the Notch signaling pathway that balances the expression of the master astrocytic gene Nfia.
View Article and Find Full Text PDFBackground: Gene panel testing by massive parallel sequencing has increased the diagnostic yield but also the number of variants of uncertain significance. Clinical interpretation of genomic data requires expertise for each gene and disease. Heterozygous ATM pathogenic variants increase the risk of cancer, particularly breast cancer.
View Article and Find Full Text PDFAlthough somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported.
View Article and Find Full Text PDFPrimary immunodeficiencies (PIDs) are a heterogeneous group of disorders. The lack of comprehensive disease-specific mutation databases may hinder or delay classification of the genetic variants found in samples from these patients. This is especially true for familial hemophagocytic lymphohistiocytosis (FHL), a life-threatening PID classically considered an autosomal recessive condition, but with increasingly demonstrated genetic heterogeneity.
View Article and Find Full Text PDFThe presence of mutations in PRF1, UNC13D, STX11 and STXBP2 genes in homozygosis or compound heterozygosis results in immune deregulation. Most such cases lead to clinical manifestations of haemophagocytic lymphohistiocytosis (HLH). In the present study, we analyzed degranulation and cytotoxicity in a pediatric patient with a late presentation of HLH associated with Epstein-Barr virus infection.
View Article and Find Full Text PDFHistone H3 lysine 9 methylation (H3K9me) is essential for cellular homeostasis; however, its contribution to development is not well established. Here, we demonstrate that the H3K9me2 demethylase PHF2 is essential for neural progenitor proliferation in vitro and for early neurogenesis in the chicken spinal cord. Using genome-wide analyses and biochemical assays we show that PHF2 controls the expression of critical cell cycle progression genes, particularly those related to DNA replication, by keeping low levels of H3K9me3 at promoters.
View Article and Find Full Text PDFTesting for variation in BRCA1 and BRCA2 (commonly referred to as BRCA1/2), has emerged as a standard clinical practice and is helping countless women better understand and manage their heritable risk of breast and ovarian cancer. Yet the increased rate of BRCA1/2 testing has led to an increasing number of Variants of Uncertain Significance (VUS), and the rate of VUS discovery currently outpaces the rate of clinical variant interpretation. Computational prediction is a key component of the variant interpretation pipeline.
View Article and Find Full Text PDFCompensated pathogenic deviations (CPDs) are sequence variants that are pathogenic in humans but neutral in other species. In recent years, our molecular understanding of CPDs has advanced substantially. For example, it is known that their impact on human proteins is generally milder than that of average pathogenic mutations and that their impact is suppressed in non-human carriers by compensatory mutations.
View Article and Find Full Text PDFBRCA1 and BRCA2 (BRCA1/2) germline variants disrupting the DNA protective role of these genes increase the risk of hereditary breast and ovarian cancers. Correct identification of these variants then becomes clinically relevant, because it may increase the survival rates of the carriers. Unfortunately, we are still unable to systematically predict the impact of BRCA1/2 variants.
View Article and Find Full Text PDFOne of the known potential effects of disease-causing amino acid substitutions in proteins is to modulate protein-protein interactions (PPIs). To interpret such variants at the molecular level and to obtain useful information for prediction purposes, it is important to determine whether they are located at protein-protein interfaces, which are composed of two main regions, core and rim, with different evolutionary conservation and physicochemical properties. Here we have performed a structural, energetics and computational analysis of interactions between proteins hosting mutations related to diseases detected in newborn screening.
View Article and Find Full Text PDFPolymerase γ catalytic subunit () gene encodes the enzyme responsible for mitochondrial DNA (mtDNA) synthesis. Mutations affecting are the most prevalent cause of mitochondrial disease because of defective mtDNA replication and lead to a wide spectrum of clinical phenotypes characterized by mtDNA deletions or depletion. Enhancing mitochondrial deoxyribonucleoside triphosphate (dNTP) synthesis effectively rescues mtDNA depletion in different models of defective mtDNA maintenance due to dNTP insufficiency.
View Article and Find Full Text PDFNeuropsychopharmacology
April 2019
Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorders in childhood and persists into adulthood in 40-65% of cases. Given the polygenic and heterogeneous architecture of the disorder and the limited overlap between genetic studies, there is a growing interest in epigenetic mechanisms, such as microRNAs, that modulate gene expression and may contribute to the phenotype. We attempted to clarify the role of microRNAs in ADHD at a molecular level through the first genome-wide integrative study of microRNA and mRNA profiles in peripheral blood mononuclear cells of medication-naive individuals with ADHD and healthy controls.
View Article and Find Full Text PDFBackground: Cellular cobalamin defects are a locus and allelic heterogeneous disorder. The gold standard for coming to genetic diagnoses of cobalamin defects has for some time been gene-by-gene Sanger sequencing of individual DNA fragments. Enzymatic and cellular methods are employed before such sequencing to help in the selection of the gene defects to be sought, but this is time-consuming and laborious.
View Article and Find Full Text PDF