We present an asymmetric double-clad fiber coupler (A-DCFC) exploiting a disparity in fiber etendues to exceed the equipartition limit (≤50% extraction of inner cladding multi-mode light). The A-DCFC is fabricated using two commercially available fibers and a custom fusion-tapering setup to achieve >70% extraction of multi-mode inner cladding light without affecting (>95% transmission) single-mode light propagation in the core. Imaging with the A-DCFC is demonstrated in a spectrally encoded imaging setup using a weakly backscattering biological sample.
View Article and Find Full Text PDFWe present a double-clad fiber coupler (DCFC) for use in endoscopy to reduce speckle contrast, increase signal collection and depth of field. The DCFC is made by fusing and tapering two all silica double-clad fiber (DCF) and allows achromatic transmission of >95% of core illumination (1265nm - 1325nm) as well as collection of >42% of inner cladding diffuse light. Its potential for endoscopy is demonstrated in a spectrally encoded imaging setup which shows speckle reduction by a factor 5, increased signal collection by a factor 9 and enhanced depth of field by 1.
View Article and Find Full Text PDFWe investigate the refractive index profile evolution during the tapering of fused couplers. We assume the refractive index to be a linear function of the dopant concentration. The evolution of the refractive index profile is obtained by solving the diffusion-convection equation.
View Article and Find Full Text PDFWe investigate the refractive index profile of the cross-section of fused type fiber-optic couplers by solving the convective diffusion equation. We assume the refractive index to be a linear function of the dopant concentration. The viscous sintering of the optical fibers is considered as the motion of an incompressible Newtonian fluid which is driven by the surface tension acting at the free boundary.
View Article and Find Full Text PDFLosses of cladding modes are part of the mechanism of operation of a long-period grating (LPG) when it is used as an optical filter. We present a LPG computer simulation that accounts for these losses. On the basis of this simulation, we show that losses result in qualitatively different LPG spectral behavior.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2002
The perturbation to the refractive index induced by a periodic electric field from two systems of interdigitated electrodes with the electrode-finger period l is analyzed for a waveguide with an electro-optically (EO) active core-cladding. It is shown that the electric field induces two superimposed transmissive refractive-index gratings with different symmetries of their cross-section distributions. One of these gratings has a constant component of an EO-induced refractive index along with its variable component with periodicity l, whereas the second grating possesses only a variable component with periodicity 2l.
View Article and Find Full Text PDF