Purpose: The present study aimed to determine whether whole-body fat oxidation and muscle deoxygenation kinetics parameters during exercise were related in individuals with different aerobic fitness levels.
Methods: Eleven cyclists [peak oxygen uptake ( ): 64.9 ± 3.
The cognitive-motor performance (CMP), defined here as the capacity to rapidly use sensory information and transfer it into efficient motor output, represents a major contributor to performance in almost all sports, including soccer. Here, we used a high-technology system (COGNIFOOT) which combines a visual environment simulator fully synchronized with a motion capture system. This system allowed us to measure objective real-time CMP parameters (passing accuracy/speed and response times) in a large turf-artificial grass playfield.
View Article and Find Full Text PDFAerobic exercise training performed at the intensity eliciting maximal fat oxidation (Fat(max)) has been shown to improve the metabolic profile of obese patients. However, limited information is available on the reproducibility of Fat(max) and related physiological measures. The aim of this study was to assess the intra-individual variability of: a) Fat(max) measurements determined using three different data analysis approaches and b) fat and carbohydrate oxidation rates at rest and at each stage of an individualized graded test.
View Article and Find Full Text PDFThis study aimed to compare the effects of 2 different prior endurance exercises on subsequent whole-body fat oxidation kinetics. Fifteen men performed 2 identical submaximal incremental tests (Incr2) on a cycle ergometer after (i) a ∼40-min submaximal incremental test (Incr1) followed by a 90-min continuous exercise performed at 50% of maximal aerobic power-output and a 1-h rest period (Heavy); and (ii) Incr1 followed by a 2.5-h rest period (Light).
View Article and Find Full Text PDFAppl Physiol Nutr Metab
February 2011
Discrepancies appear in studies comparing fat oxidation between men and women. Therefore, this study aimed to quantitatively describe and compare whole-body fat oxidation kinetics between genders during exercise, using a sinusoidal (SIN) model. Twelve men and 11 women matched for age, body mass index, and aerobic fitness (maximal oxygen uptake and maximal power output per kilogram of fat-free mass (FFM)) performed submaximal incremental tests (Incr) with 5-min stages and a 7.
View Article and Find Full Text PDFThis study aimed to quantitatively describe and compare whole-body fat oxidation kinetics in cycling and running using a sinusoidal mathematical model (SIN). Thirteen moderately trained individuals (7 men and 6 women) performed two graded exercise tests, with 3-min stages and 1 km h(-1) (or 20 W) increment, on a treadmill and on a cycle ergometer. Fat oxidation rates were determined using indirect calorimetry and plotted as a function of exercise intensity.
View Article and Find Full Text PDFThe present study aimed to examine the effects of a prior 1-hour continuous exercise bout (CONT) at an intensity (Fat(max)) that elicits the maximal fat oxidation (MFO) on the fat oxidation kinetics during a subsequent submaximal incremental test (IncrC). Twenty moderately trained subjects (9 men and 11 women) performed a graded test on a treadmill (Incr), with 3-minute stages and 1-km.h(-1) increments.
View Article and Find Full Text PDFMed Sci Sports Exerc
August 2009
Purpose: The purpose of this study was to develop a mathematical model (sine model, SIN) to describe fat oxidation kinetics as a function of the relative exercise intensity [% of maximal oxygen uptake (%VO2max)] during graded exercise and to determine the exercise intensity (Fatmax) that elicits maximal fat oxidation (MFO) and the intensity at which the fat oxidation becomes negligible (Fatmin). This model included three independent variables (dilatation, symmetry, and translation) that incorporated primary expected modulations of the curve because of training level or body composition.
Methods: Thirty-two healthy volunteers (17 women and 15 men) performed a graded exercise test on a cycle ergometer, with 3-min stages and 20-W increments.
Purpose: The aim of this study was to examine whether lipid oxidation predominates during 3 h of postexercise recovery in high-intensity interval exercise as compared with moderate-intensity continuous exercise on a cycle ergometer in fit young men (n = 12; 24.6 +/- 0.6 yr).
View Article and Find Full Text PDF