Purpose: Fed-batch cultures have rarely been used in single cell protein (SCP) research. This work evaluated multiple yeast species for suitability as SCP cultivated using glucose- and sucrose-based substrate and performed in-depth studies of fed-batch SCP cultivation kinetics for selected yeasts, including determination of specific crude nitrogen-to-protein conversion factors.
Methods: SCP was cultivated using fully synthetic media in flask batch or bioreactor fed-batch cultures.
Due to the rapid increase in the world's population, many developing countries are facing malnutrition problems, including famine and food insecurity. Particularly, the deficiency of protein sources becomes a serious problem for human and animal nutrition. In this context, Single Cell Proteins, could be exploited as an alternative source of unconventional proteins.
View Article and Find Full Text PDFA metabolic flux analysis (MFA) model was developed to optimize the xylose conversion into ethanol using Candida shehatae strain. This metabolic model was compartmented and constructed with xylose as carbon substrate integrating the enzymatic duality of the first step of xylose degradation via an algebraic coefficient. The model included the pentose phosphate pathway, glycolysis, synthesis of major metabolites like ethanol, acetic acid and glycerol, the tricarboxylic acid cycle as well as the respiratory chain, the cofactor balance, and the maintenance.
View Article and Find Full Text PDFThis work combines physical and biochemical analyses to scrutinize liquefaction and saccharification of complex lignocellulose materials. A multilevel analysis (macroscopic: rheology, microscopic: particle size and morphology and molecular: sugar product) was conducted at the lab-scale with three matrices: microcrystalline cellulose (MCC), Whatman paper (WP) and extruded paper-pulp (PP). A methodology to determine on-line viscosity is proposed and validated using the concept of Metzner and Otto (1957) and Rieger and Novak's (1973).
View Article and Find Full Text PDFQuantification of different physiological states of Candida shehatae cells was performed by flow cytometry associated with two fluorescent probes. Propidium iodide and carboxyfluorescein diacetate acetoxymethyl ester fluorescent dyes were chosen based on data from the literature. A staining procedure, developed from the previous works was applied to the yeast.
View Article and Find Full Text PDFOn the basis of knowledge of the biological role of glycerol in the redox balance of Saccharomyces cerevisiae, a fermentation strategy was defined to reduce the surplus formation of NADH, responsible for glycerol synthesis. A metabolic model was used to predict the operating conditions that would reduce glycerol production during ethanol fermentation. Experimental validation of the simulation results was done by monitoring the inlet substrate feeding during fed-batch S.
View Article and Find Full Text PDFThree models based on sigmoidal plotting were tested for their ability to describe zearalenone adsorption on Saccharomyces cerevisiae cell walls in vitro. All three models closely fitted the experimental data, but Hill's equation gave the most accurate parameters, and provided information on the physical and chemical mechanisms involved in the adsorption of mycotoxin on yeast cell walls.
View Article and Find Full Text PDF