Aerosol delivery represents a rapid and non-invasive way to directly reach the lungs while escaping the hepatic first-pass effect. The development of pulmonary drugs for respiratory diseases such as cystic fibrosis, lung infections, pulmonary fibrosis or lung cancer requires an enhanced understanding of the relationships between the natural physiology of the respiratory system and the pathophysiology of these conditions. This knowledge is crucial to better predict and thereby control drug deposition.
View Article and Find Full Text PDFFor cystic fibrosis gene therapy, the aerosolization of genetic materials is the most relevant delivery strategy to reach the airway epithelium. However, aerosolized formulations have to resist shear forces while maintaining the integrity of plasmid DNA (pDNA) during its journey from the nebulization to the epithelial cells. Herein, we compared the efficiency of gene delivery by aerosolization of two types of formulations: (i) BSV163, a branched cationic amphiphilic compound, co-formulated with different DOPE ratios (mol/mol) and DMPE-PEG5000 and (ii) 25 KDa branched polyethylenimine (b-PEI)-based formulation used as control.
View Article and Find Full Text PDF