The paradigm shift brought about by the expansion of tissue engineering and regenerative medicine away from the use of biomaterials, currently questions the value of histopathologic methods in the evaluation of biological changes. To date, the available tools of evaluation are not fully consistent and satisfactory for these advanced therapies. We have developed a new, simple and inexpensive quantitative digital approach that provides key metrics for structural and compositional characterization of the regenerated tissues.
View Article and Find Full Text PDFPurpose: Tacks and sutures ensure a strong fixation of meshes, but they can be associated with pain and discomfort. Less invasive methods are now available. Three fixation modalities were compared: the ProGrip™ laparoscopic self-fixating mesh; the fibrin glue Tisseel™ with Bard™ Soft Mesh; and the SorbaFix™ absorbable fixation system with Bard™ Soft Mesh.
View Article and Find Full Text PDFA new biphasic calcium phosphate ceramic material has been developed in our laboratory. It is composed of 60% of hydroxyapatite and 40% of beta-tricalcium phosphate, based on three granulometries (submicron, round microporous 80-200 mum and macro microporous 0.5-1 mm particles) and hydrated with water leading the formation of a putty filler for bone repair.
View Article and Find Full Text PDFFor many years, fibrin sealants were associated with bone substitutes to promote bone healing. However, the osteoblastic response to fibrin sealant components remains poorly documented. In this study, MC3T3-E1 osteoblastic cells were cultured on biphasic calcium phosphate ceramic (MBCP) coated with Tissucol components (thrombin and fibrinogen).
View Article and Find Full Text PDFAdv Colloid Interface Sci
December 2002
Synthesis of grafting silane on a hydro soluble cellulose ether (HPMC) was described. In alkaline medium, this derivate is under gel form. With a decrease of the pH, a self-hardening occurs due to the silanol condensation.
View Article and Find Full Text PDFThe general properties of hydroxyethylcellulose (HEC) grafted with 3-glycidoxypropyltrimethoxysilane (GPTMS) or 3-glycidoxypropylmethyldiethoxysilane (GPDMS) were studied for potential biomedical applications. The graft involved a Williamson reaction between the free hydroxyl function of HEC and the epoxy function of the two silanes. As the grafted silanes are in ionic form (sodium silanolate), this product remains in gel form at basic pH (>12.
View Article and Find Full Text PDF