The source inference of ignitable liquids in forensic science is still a challenging and ongoing research area. In real case applications, specimens of different natures, which may have been exposed to fire or not, may have to be compared. These comparisons are difficult since specimens may have been altered by evaporation, combustion or both.
View Article and Find Full Text PDFRecent research efforts in the domain of fire debris analysis have been mainly oriented towards the development of innovative analytical procedures and chemometric approaches for the detection and classification of ignitable liquids in fire specimens according to the ASTM E1618. However, less attention has been brought to the question of the source inference of ignitable liquids. Infer the identity of source of ignitable liquids recovered from arson sites is still a challenging and ongoing research area.
View Article and Find Full Text PDFShells fired during World War I exhibited different explosive compounds and some of these weapons also contained a wide variety of chemical warfare agents. At the end of the war, for safety purposes, the large quantity of weapons remaining on the former front needed to be dismantled and destroyed. A large amount of the remaining shells was destroyed in specific sites which led to the contamination of the surroundings in Belgium and France.
View Article and Find Full Text PDFSpecific viscosities for a set of six nitrocellulose (NC) standards comprising three different mass-average molar masses (between 20,000 and 300,000 g mol(-1)) of two different nitrogen contents (11.2 and 12.1%) were measured at 20 °C in tetrahydrofuran, using capillary electrophoresis instrumentation as a bench-top viscometer in frontal mode.
View Article and Find Full Text PDFThis work focuses on the development of a CE method allowing, for the first time, the simultaneous separation of the underivatized first seven cellodextrin oligomers (glucose, cellobiose, cellotriose, cellotetraose, cellopentaose, cellohexaose, and celloheptaose), with a view to analyze the hydrolysates obtained after partial acid depolymerization of nitrocellulose, and eight carbohydrates (ribose, xylose, fructose, mannose, galactose, maltose, lactose, and sucrose), which might be potential interfering compounds in explosives samples. Separation was achieved with a highly alkaline BGE containing sodium chloride and direct mid-UV-absorbance detection was performed after photo-oxidation in the detection window. EOF was reversed to speed up the analysis using a dynamic capillary coating by hexadimethrine bromide.
View Article and Find Full Text PDFThe nitrogen content is of paramount importance to predict the explosive or non-explosive character of nitrocellulose (NC), and hence its applications. There are still quite a few really effective analytical methodologies allowing its determination, due to great NC molecular complexity. One of the approaches giving access to nitrogen content consists in releasing the nitrogenic moieties through alkaline hydrolysis.
View Article and Find Full Text PDFFine characterization of nitrocellulose (NC) remains a challenge, especially in forensic analysis, and a strategy consisting in obtaining representative fingerprints by a separation technique, as for proteins, is of prime interest. In this work, we first established that NCs (especially of high molar mass) cannot be representatively derivatized by 8-aminopyrene-1,3,6-trisulfonic acid (APTS), because of their poor solubility in the medium required for APTS derivatization. Therefore, a partial acid depolymerization step was considered, prior to derivatization by APTS, in an attempt to generate a mixture of oligosaccharides retaining information on the initial NC sample and/or on the cellulose used to prepare it.
View Article and Find Full Text PDFA new method was proposed to determine the nitrogen content of nitrocelluloses (NCs). It is based on the finding of a linear relationship between the nitrogen content and the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis. Capillary electrophoresis was used to monitor the concentration of nitrite and nitrate ions.
View Article and Find Full Text PDFNitrocellulose (NC) is a nitrate cellulose ester polymer whose nitrogen content determines its physical and chemical properties and its industrial applications. For the first time, capillary electrophoresis (CE) was used to quantify nitrite and nitrate ions released after the alkaline hydrolysis of NC to determine its nitrogen content. This article focuses on the development and validation of the CE method adapted to the determination of these anions in basic matrices in 3 min total runtime.
View Article and Find Full Text PDF