The synthesis of a diol containing a nonalternant aromatic core was investigated to access a nonalternant isomer of bisanthene with functional groups suitable for two-dimensional polymerization. An alternant diol and its nonalternant isomer were prepared in a short synthetic route from the same bifluorenylidene starting material. The bifluorenylidene reactant undergoes a Stone-Wales rearrangement in neat triflic acid, which unexpectedly provided both an alternant and nonalternant dione.
View Article and Find Full Text PDFSynthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets.
View Article and Find Full Text PDFSupramolecular polymers are compelling platforms for the design of stimuli-responsive materials with emergent functions. Here, we report the assembly of an amphiphilic nanotube for Li-ion conduction that exhibits high ionic conductivity, mechanical integrity, electrochemical stability, and solution processability. Imine condensation of a pyridine-containing diamine with a triethylene glycol functionalized isophthalaldehyde yields pore-functionalized macrocycles.
View Article and Find Full Text PDFMacrocycles that assemble into nanotubes exhibit emergent properties stemming from their low dimensionality, structural regularity, and distinct interior environments. We report a versatile strategy to synthesize diverse nanotube structures in a single, efficient reaction by using a conserved building block bearing a pyridine ring. Imine condensation of a 2,4,6-triphenylpyridine-based diamine with various aromatic dialdehydes yields chemically distinct pentagonal [5 + 5], hexagonal [3 + 3], and diamond-shaped [2 + 2] macrocycles depending on the substitution pattern of the aromatic dialdehyde monomer.
View Article and Find Full Text PDF