Publications by authors named "Xavier A Jeanbourquin"

Melt-processing of organic semiconductors (OSCs) is a promising environmentally-friendly technique that can alleviate dependence on toxic chlorinated solvents. While melt-processed single-component OSC devices ( field-effect-transistors) have been demonstrated, multi-component bulk heterojunctions (BHJs) for organic photovoltaics (OPVs) remain a challenge. Herein, we demonstrate a strategy that affords tunable BHJ phase segregation and domain sizes from a single-phase homogeneous melt by employing strongly-crystalline small-molecule OSCs together with a customized molecular compatibilizing (MCP) additive.

View Article and Find Full Text PDF

Ternary bulk heterojunctions with cascade-type energy-level configurations are of significant interest for further improving the power conversion efficiency (PCE) of organic solar cells. However, controlling the self-assembly in solution-processed ternary blends remains a key challenge. Herein, we leverage the ability to control the crystallinity of molecular semiconductors via a spiro linker to demonstrate a simple strategy suggested to drive the self-assembly of an ideal charge-cascade morphology.

View Article and Find Full Text PDF

Tunable ambipolar photoelectrochemical behavior emerges from microdomains of nanostructured p-type CuFeO and n-type Fe O that arise from a single facile solution-processed thin film. The switchable operation of this system is controlled by chemical, optical, or electronic inputs with a uniquely high photocurrent response (on the order of 1 mA cm ), suitable for robust practical application as an oxygen photoregulator.

View Article and Find Full Text PDF

Using flexible aliphatic chains to link conjugated molecular semiconductors affords a polymeric material that possesses defined conjugated segments but extended covalent connectivity, which enhances crystallinity and thermal stability in field-effect transistors and bulk heterojunction solar-cell devices when used as an additive.

View Article and Find Full Text PDF

Nanostructuring hematite films is a critical step for enhancing photoelectrochemical performance by circumventing the intrinsic limitations on minority carrier transport. Herein, we present a novel sol-gel approach that affords nanostructured hematite films by including CuO as sacrificial templating agent. First, by annealing in air at 450 °C a film comprising an intimate mixture of CuO and Fe2O3 nanoparticles is obtained.

View Article and Find Full Text PDF

We propose a new mechanism by which the common electrolyte additive guanidinium thiocyanate (GdmSCN) improves efficiency in dye-sensitized solar cells (DSSCs). We demonstrate that binding of Gdm(+) to TiO2 is weak and does not passivate recombination sites on the TiO2 surface as has been previously claimed. Instead, we show that Gdm(+) binds strongly to the N719 and D131 dyes and probably to many similar compounds.

View Article and Find Full Text PDF