Prussian blue analogues are considered as promising candidates for aqueous sodium-ion batteries providing a decently high energy density for stationary energy storage. However, suppose the operation of such materials under high-power conditions could be facilitated. In that case, their application might involve fast-response power grid stabilization and enable short-distance urban mobility due to fast re-charging.
View Article and Find Full Text PDFAqueous sodium-ion batteries based on Prussian Blue Analogues (PBA) are considered as promising and scalable candidates for stationary energy storage systems, where longevity and cycling stability are assigned utmost importance to maintain economic viability. Although degradation due to active material dissolution is a common issue of battery electrodes, it is hardly observable directly due to a lack of techniques, making it challenging to optimize the performance of electrodes. By operating NaNi[Fe(CN)] and NaCo[Fe(CN)] model electrodes in a flow-cell setup connected to an inductively coupled plasma mass spectrometer, in this work, the dynamics of constituent transition-metal dissolution during the charge-discharge cycles was monitored in real time.
View Article and Find Full Text PDFElectrochemical impedance spectroscopy (EIS) is a versatile tool to understand complex processes in batteries. This technique can investigate the effects of battery components like the electrode and electrolyte, electrochemical reactions, interfaces, and interphases forming in the electrochemical systems. The interpretation of the EIS data is typically made using models expressed in terms of the so-called electrical equivalent circuits (EECs) to fit the impedance spectra.
View Article and Find Full Text PDFIonic liquid (IL) post-treatment for thin films of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is employed for the simultaneous enhancement of Seebeck coefficients and electrical conductivities. Through systematic variation of the ILs, by changing the anions while keeping the cation unchanged, changes in thermoelectric, spectroscopic, and morphological properties are investigated by means of UV-vis spectroscopy and grazing-incidence wide-angle X-ray scattering (GIWAXS) as a function of the IL concentration. The simultaneous enhancement in the two important thermoelectric properties is ascribed to the binary nature of the ILs, which complements that of PEDOT:PSS.
View Article and Find Full Text PDF