Publications by authors named "Xao X Tang"

Neuroblastoma is a pediatric cancer with significant clinical heterogeneity. Despite extensive efforts, it is still difficult to cure children with high-risk neuroblastoma. Immunotherapy is a promising approach to treat children with this devastating disease.

View Article and Find Full Text PDF

Neuroblastoma is the most common extracranial childhood solid tumor. The majority of high-risk neuroblastoma is resistant/refractory to the current high intensity therapy. Neuroblastoma lacks classical HLA Class I expression and exhibits low mutation burden, allowing neuroblastoma cells to evade CD8+ T cell-mediated immunity.

View Article and Find Full Text PDF

Neuroblastoma is the most common extracranial childhood solid tumor. The majority of high-risk neuroblastoma is resistant/refractory to the current high intensity therapy, and the survival of these patients remains poor for the last three decades. To effectively treat these extremely unfavorable neuroblastomas, innovative immunotherapy approaches would be the most promising.

View Article and Find Full Text PDF

Neuroblastomas with a high mitosis-karyorrhexis index (High-MKI) are often associated with amplification, MYCN protein overexpression and adverse clinical outcome. However, the prognostic effect of MYC-family protein expression on these neuroblastomas is less understood, especially when is not amplified. To address this, MYCN and MYC protein expression in High-MKI cases (120 amplified and 121 non- amplified) was examined by immunohistochemistry.

View Article and Find Full Text PDF

In the present study, we investigated the anticancer effects of the mitochondrial inhibitors, metaiodobenzylguanidine (MIBG), metformin and phenformin. 131I-MIBG has been used for scintigraphic detection and the targeted radiotherapy of neuroblastoma (NB), a pediatric malignancy. Non-radiolabeled MIBG has been reported to be cytotoxic to NB cells in vitro and in vivo.

View Article and Find Full Text PDF

Neuroblastoma is a common pediatric solid tumor that exhibits a striking clinical bipolarity: favorable and unfavorable. The survival rate of children with unfavorable neuroblastoma remains low among all childhood cancers. MYCN and MYC play a crucial role in determining the malignancy of unfavorable neuroblastomas, whereas high-level expression of the favorable neuroblastoma genes is associated with a good disease outcome and confers growth suppression of neuroblastoma cells.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are plastic in nature, a characteristic that hampers cancer therapeutics. Neuroblastoma (NB) is a pediatric tumor of neural crest origin, and half of the cases are highly aggressive. By treating NB cell lines [SKNAS, SKNBE(2)C, CHP134, and SY5Y] with epigenetic modifiers for a short time, followed by sphere-forming culture conditions, we have established stem cell-like NB cells that are phenotypically stable for more than a year.

View Article and Find Full Text PDF

Neuroblastoma is a childhood cancer that exhibits either a favorable or an unfavorable phenotype. MYCN and MYC are oncoproteins that play crucial roles in determining the malignancy of unfavorable neuroblastoma. The Hsp90 superchaperone complex assists in the folding and function of a variety of oncogenic client proteins.

View Article and Find Full Text PDF

Neuroblastoma is a childhood malignancy of the sympathetic nervous system. The tumor exhibits two different phenotypes: favorable and unfavorable. MYCN amplification is associated with rapid tumor progression and the worst neuroblastoma disease outcome.

View Article and Find Full Text PDF

Neuroblastoma is a pediatric solid tumor that exhibits striking clinical bipolarity. Despite extensive efforts to treat unfavorable neuroblastoma, survival rate of children with the disease is among the lowest. Previous studies suggest that EPHA2, a member of the EPH family receptor kinases, can either promote or suppress cancer cell growth depending on cellular contexts.

View Article and Find Full Text PDF

Purpose: Neuroblastoma is a childhood cancer that exhibits either a favorable or an unfavorable phenotype. Favorable neuroblastoma genes (EPHB6, EFNB2, EFNB3, NTRK1, and CD44) are genes whose high-level expression predicts favorable neuroblastoma disease outcome. Accordingly, the forced expression of these genes or their reactivation by gene silencing inhibitors in unfavorable neuroblastoma cells results in suppression of tumor growth and metastases.

View Article and Find Full Text PDF

MYCN amplification strongly predicts adverse outcome of neuroblastoma. However, the significance of MYCN expression in the clinical and biological behavior of neuroblastoma has been unclear. To address this question, we first examined the expression of MYCN in combination with TrkA (a favorable prognostic indicator of neuroblastoma) in 91 primary neuroblastoma by quantitative reverse transcription-PCR and investigated the relationship among patient survival, MYCN, and TrkA expressions.

View Article and Find Full Text PDF

Purpose And Experimental Design: Neuroblastoma (NB) is a common pediatric solid tumor that exhibits a striking clinical bipolarity: favorable and unfavorable. Favorable NB genes (EPHB6, EFNB2, EFNB3, NTRK1, and CD44) are genes whose high-level expression predicts favorable NB outcome, and forced expression of these genes inhibits growth of unfavorable NB cells. In this study, we investigated whether favorable NB gene expression could be augmented in unfavorable NB cells by chemical compounds and whether an increased expression of these genes was associated with suppression of NB growth and metastasis.

View Article and Find Full Text PDF