Supplemental oxygen is a life-saving intervention administered to individuals suffering from respiratory distress, including adults with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Despite the clinical benefit, supplemental oxygen can create a hyperoxic environment that increases reactive oxygen species, oxidative stress, and lung injury. We have previously shown that cytochrome P450 (CYP)1A enzymes decrease susceptibility to hyperoxia-induced lung injury.
View Article and Find Full Text PDFQuercetin (QU) is one of the most common flavonoids that are present in a wide variety of fruits, vegetables, and beverages. This compound possesses potent anti-inflammatory and anti-oxidant properties. Supplemental oxygen is routinely administered to premature infants with pulmonary insufficiency.
View Article and Find Full Text PDFCurr Opin Toxicol
February 2018
Oxygen supplementation has been used as a part of respiratory care for preterm and term newborns since the beginning of 19 century. Although oxygen administration can be life-saving, reactive oxygen species (ROS) and reactive nitrogen species (RNS) due to hyperoxia can have detrimental effects in the developing organs of the preterm infants, with both short and long term consequences. Oxygen toxicity on the immature tissues of preterm infants can contribute to the development of several diseases like retinopathy of prematurity (ROP) and bronchopulmonary dysplasia (BPD).
View Article and Find Full Text PDFProlonged hyperoxia contributes to bronchopulmonary dysplasia (BPD) in preterm infants. β-Naphthoflavone (BNF) is a potent inducer of cytochrome P450 (CYP)1A enzymes, which have been implicated in hyperoxic injuries in adult mice. In this investigation, we tested the hypothesis that newborn mice lacking the Cyp1a1 gene would be more susceptible to hyperoxic lung injury than wild-type (WT) mice and that postnatal BNF treatment would rescue this phenotype by mechanisms involving CYP1A and/or NAD(P)H quinone oxidoreductase (NQO1) enzymes.
View Article and Find Full Text PDFSex-specific differences in pulmonary morbidity in adults and preterm infants are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. Cytochrome P450 (CYP) 1A enzymes have been shown to play a mechanistic role in hyperoxic lung injury (HLI) in animal models.
View Article and Find Full Text PDFHyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome. Cytochrome P450 (CYP) 1A enzymes have been implicated in hyperoxic lung injury, but the mechanistic role of CYP1A2 in pulmonary injury is not known. We hypothesized that mice lacking the gene Cyp1a2 (which is predominantly expressed in the liver) will be more sensitive to lung injury and inflammation mediated by hyperoxia and that CYP1A2 will play a protective role by attenuating lipid peroxidation and oxidative stress in the lung.
View Article and Find Full Text PDFExposure to high concentration of oxygen (hyperoxia) leads to lung injury in experimental animal models and plays a role in the pathogenesis of diseases such as Acute Respiratory Distress Syndrome (ARDS) and Bronchopulmonary dysplasia (BPD) in humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. The major goal of this study was to characterize the changes in the pulmonary transcriptome following hyperoxia exposure and further elucidate the sex-specific changes.
View Article and Find Full Text PDFHyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome in adults and bronchopulmonary dysplasia in premature infants. Cytochrome P450 (CYP)1A1 has been shown to modulate hyperoxic lung injury. The mechanistic role(s) of CYP1A1 in hyperoxic lung injury in vivo is not known.
View Article and Find Full Text PDFMaternal smoking is one of the risk factors for preterm birth and for the development of bronchopulmonary dysplasia (BPD). In this study, we tested the hypothesis that prenatal exposure of rats to benzo[a]pyrene (BP), a component of cigarette smoke, will result in increased susceptibility of newborns to oxygen-mediated lung injury and alveolar simplification, and that cytochrome P450 (CYP)1A and 1B1 enzymes and oxidative stress mechanistically contribute to this phenomenon. Timed pregnant Fisher 344 rats were administered BP (25 mg/kg) or the vehicle corn oil (CO) on gestational days 18, 19 and 20, and newborn rats were either maintained in room air or exposed to hyperoxia (85% O2) for 7 or 14 days.
View Article and Find Full Text PDFSex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown.
View Article and Find Full Text PDFHyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. New BPD is characterized as having alveolar simplification. We reported previously that aryl hydrocarbon receptor (AhR) deficiency increased susceptibility to hyperoxic lung injury in adult mice, and this was associated with decreased expression of cytochrome P450 1A enzymes and increased lung inflammation.
View Article and Find Full Text PDFMany carcinogenic polycyclic aromatic hydrocarbons (PAHs) and their metabolites can bind covalently to DNA. Carcinogen-DNA adducts may lead to mutations in critical genes, eventually leading to cancer. In this study we report that fish oil (FO) blocks the formation of DNA adducts by detoxification of PAHs.
View Article and Find Full Text PDFHyperoxia contributes to the development of bronchopulmonary dysplasia in premature infants. Earlier we observed that aryl hydrocarbon receptor (AhR)-deficient mice are more susceptible to hyperoxic lung injury than AhR-sufficient mice, and this phenomenon was associated with a lack of expression of cytochrome P450 1A enzymes. Omeprazole, a proton pump inhibitor used in humans with gastric acid-related disorders, activates AhR in hepatocytes in vitro.
View Article and Find Full Text PDFHyperoxia contributes to lung injury in experimental animals and bronchopulmonary dysplasia (BPD) in preterm infants. Cytochrome P4501A (CYP1A) enzymes, which are regulated by the aryl hydrocarbon receptor (AhR), have been shown to attenuate hyperoxic lung injury in rodents. Omeprazole, a proton pump inhibitor, used in humans to treat gastric acid-related disorders, induces hepatic CYP1A in vitro.
View Article and Find Full Text PDFSupplemental oxygen contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. In this investigation, we tested the hypothesis that prenatal treatment of pregnant mice (C57BL/6J) with the cytochrome P450 (CYP)1A1 inducer, ß-napthoflavone (BNF), will lead to attenuation of lung injury in newborns (delivered from these dams) exposed to hyperoxia by mechanisms entailing transplacental induction of hepatic and pulmonary CYP1A enzymes. Pregnant mice were administered the vehicle corn oil (CO) or BNF (40 mg/kg), i.
View Article and Find Full Text PDFSupplemental oxygen administration is frequently administered to pre-term and term infants having pulmonary insufficiency. However, hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Cytochrome P450 (CYP)A enzymes have been implicated in hyperoxic lung injury.
View Article and Find Full Text PDFThe cytochrome P4501A (CYP1A) enzymes play important roles in the metabolic activation and detoxification of numerous environmental carcinogens, including polycyclic aromatic hydrocarbons (PAHs). In this study, we tested the hypothesis that hepatic CYP1A2 differentially regulates mouse hepatic and pulmonary CYP1A1 expression and suppresses transcriptional activation of human CYP1A1 (hCYP1A1) promoter in response to 3-methylcholanthrene (MC) in vivo. Administration of wild-type (WT) (C57BL/6J) or Cyp1a2-null mice with a single dose of MC (100 μmol/kg i.
View Article and Find Full Text PDFSupplemental oxygen, used to treat pulmonary insufficiency in newborns, contributes to the development of bronchopulmonary dysplasia (BPD). Cytochrome P4501A enzymes are induced by hyperoxia in animal models, but their role in human systems is unknown. Here we investigated the molecular mechanisms of induction of CYP1A1 by hyperoxia in human lung cell lines.
View Article and Find Full Text PDFCytochrome CYP1A (CYP1A) enzymes catalyze bioactivation of 3-methylcholanthrene (MC) to genotoxic metabolites. Here, we tested the hypothesis that CYP1A2 catalyzes formation of MC-DNA adducts that are preferentially formed in the promoter region of CYP1A1, resulting in modulation of CYP1A1 gene expression. MC bound covalently to plasmid DNA (50 micro g) containing human CYP1A1 promoter (pGL3-1A1), when incubated with wild-type (WT) liver microsomes (2 mg) and NAPPH 37 degrees C for 2h, giving rise to 9 adducts, as determined by (32)P-postlabeling.
View Article and Find Full Text PDFInhaled nitric oxide (iNO), with supplemental oxygen, is used in the treatment of hypoxic respiratory failure of the newborn. In this study, we tested the hypothesis that exposure of newborn rats to iNO, hyperoxia, or iNO + hyperoxia would modulate the expression of pulmonary cytochrome P450 (CYP)1A1 in relation to acute lung injury. Newborn Fischer 344 rats were maintained in room air, or exposed to iNO, hyperoxia (>95%), or iNO (20 or 40 ppm) + hyperoxia for up to 168 h, and lung injury parameters and CYP1A1 expression were studied.
View Article and Find Full Text PDFAdministration of supplemental oxygen is frequently encountered in infants suffering from pulmonary insufficiency and in adults with acute respiratory distress syndrome. However, hyperoxia causes acute lung damage in experimental animals. In the present study, we investigated the roles of the Ah receptor (AHR) in the modulation of cytochrome P4501A (CYP1A) enzymes and in the development of lung injury by hyperoxia.
View Article and Find Full Text PDF