This study investigated the impact of match location and travel modality on physical performance of an Australian A-League association football team. Match location comprised of a home vs away comparison; while travel modality compared home matches, road travel, short-flight travel, and long-flight travel. Both models accounted for match result, opposition quality and total distance covered.
View Article and Find Full Text PDFBased on a comprehensive review and critical analysis of the literature regarding the nutritional concerns of female athletes, conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society: 1. Female athletes have unique and unpredictable hormone profiles, which influence their physiology and nutritional needs across their lifespan. To understand how perturbations in these hormones affect the individual, we recommend that female athletes of reproductive age should track their hormonal status (natural, hormone driven) against training and recovery to determine their individual patterns and needs and peri and post-menopausal athletes should track against training and recovery metrics to determine the individuals' unique patterns.
View Article and Find Full Text PDFMost reproductive-aged women are exposed to fluctuating female steroid hormones due to the menstrual cycle or oral contraceptive use. This study investigated the potential effect of the menstrual cycle and combined monophasic oral contraceptive cycle on various aspects of muscle performance. Thirty active females (12 with a natural menstrual cycle, 10 taking a high-androgenicity oral contraceptive and 8 taking a low-androgenicity oral contraceptive), aged 18 to 30 years, were tested three times throughout one menstrual or oral contraceptive cycle.
View Article and Find Full Text PDFPurpose: This study aimed to investigate the effect of fluctuating female hormones during the menstrual cycle (MC) and oral contraceptive (OC) cycle on different measures of body composition.
Methods: Twenty-two women with a natural MC and thirty women currently taking combined monophasic OC were assessed over three phases of the menstrual or oral contraceptive cycle. Body weight, skinfolds, bioelectric impedance analysis (BIA), ultrasound, dual-energy X-ray absorptiometry (DXA), and peripheral quantitative computed tomography (pQCT) measurements were performed to assess body composition.
Until recently, there has been less demand for and interest in female-specific sport and exercise science data. As a result, the vast majority of high-quality sport and exercise science data have been derived from studies with men as participants, which reduces the application of these data due to the known physiological differences between the sexes, specifically with regard to reproductive endocrinology. Furthermore, a shortage of specialist knowledge on female physiology in the sport science community, coupled with a reluctance to effectively adapt experimental designs to incorporate female-specific considerations, such as the menstrual cycle, hormonal contraceptive use, pregnancy and the menopause, has slowed the pursuit of knowledge in this field of research.
View Article and Find Full Text PDFThe aim of this study was to analyse the impact of sex hormone fluctuations throughout the menstrual cycle on cardiorespiratory response to high-intensity interval exercise in athletes. Twenty-one eumenorrheic endurance-trained females performed an interval running protocol in three menstrual cycle phases: early-follicular phase (EFP), late-follicular phase (LFP) and mid-luteal phase (MLP). It consisted of 8 × 3-min bouts at 85% of their maximal aerobic speed with 90-s recovery at 30% of their maximal aerobic speed.
View Article and Find Full Text PDFThe aim of the current study was to investigate iron metabolism in endurance trained women through the interleukin-6, hepcidin and iron responses to exercise along different endogenous hormonal states. Fifteen women performed 40 min treadmill running trials at 75% vVO2peak during three specific phases of the menstrual cycle: early follicular phase (day 3 ± 0.85), mid-follicular phase (day 8 ± 1.
View Article and Find Full Text PDFIntroduction: Oral contraceptive (OC) use influences peak exercise responses to training, however, the influence of OC on central and peripheral adaptations to exercise training are unknown. This study investigated the influence of OC use on changes in time-to-fatigue, pulmonary oxygen uptake, cardiac output, and heart rate on-kinetics, as well as tissue saturation index to 4 weeks of sprint interval training in recreationally active women.
Methods: Women taking an oral contraceptive (OC; = 25) or experiencing natural menstrual cycles (MC; = 22) completed an incremental exercise test to volitional exhaustion followed by a square-wave step-transition protocol to moderate (90% of power output at ventilatory threshold) and high intensity (Δ50% of power output at ventilatory threshold) exercise on two separate occasions.
Barba-Moreno, L, Cupeiro, R, Romero-Parra, N, Janse de Jonge, XA, and Peinado, AB. Cardiorespiratory Responses to Endurance Exercise Over the Menstrual Cycle and With Oral Contraceptive Use. J Strength Cond Res 36(2): 392-399, 2022-Female steroid hormone fluctuations during the menstrual cycle and exogenous hormones from oral contraceptives may have potential effects on exercise performance.
View Article and Find Full Text PDFObjectives: Fluctuating endogenous and exogenous ovarian hormones may influence exercise parameters; yet control and verification of ovarian hormone status is rarely reported and limits current exercise science and sports medicine research. The purpose of this study was to determine the effectiveness of an individualised three-step method in identifying the mid-luteal or high hormone phase in endogenous and exogenous hormone cycles in recreationally-active women and determine hormone and demographic characteristics associated with unsuccessful classification.
Design: Cross-sectional study design.
Int J Sports Physiol Perform
January 2018
Purpose: Menstruation and menstrual symptoms are commonly cited barriers to physical activity in women. The delay or avoidance of menstruation through extended oral-contraceptive (OC) regimens may mitigate these barriers, yet information on menstrual-manipulation practices in young physically active women is sparse. The objective of this study was to investigate prevalence of, and reasons for, menstrual manipulation with OCs in recreationally and competitively active women.
View Article and Find Full Text PDFPurpose: Oral contraceptive (OC) use reduces peak aerobic capacity (V˙O2peak); however, whether it also influences adaptations to training has yet to be determined. This study aimed to examine the influence of OC use on peak performance (peak power output [PPO]) and physiological adaptations (V˙O2peak and peak cardiac output [Q˙peak]) after sprint interval training (SIT) in recreationally active women.
Methods: Women taking an OC (n = 25) or experiencing natural regular menstrual cycles (MC; n = 16) completed an incremental exercise test to assess V˙O2peak, PPO, and Q˙peak before, immediately after, and 4 wk after 12 sessions of SIT.
Purpose: To compare various measures of training load (TL) derived from physiological (heart rate [HR]), perceptual (rating of perceived exertion [RPE]), and physical (global positioning system [GPS] and accelerometer) data during in-season field-based training for professional soccer.
Methods: Fifteen professional male soccer players (age 24.9 ± 5.
Purpose: This study investigated the effects of the menstrual cycle on prolonged exercise performance both in temperate (20°C, 45% relative humidity) and hot, humid (32°C, 60% relative humidity) conditions.
Methods: For each environmental condition, 12 recreationally active females were tested during the early follicular (day 3-6) and midluteal (day 19-25) phases, verified by measurement of estradiol and progesterone. For all four tests, thermoregulatory, cardiorespiratory, and perceptual responses were measured during 60 min of exercise at 60% of maximal oxygen consumption followed by an incremental test to exhaustion.
Excessive or prolonged foot pronation has been linked to the development of numerous overuse injuries affecting the lower limb. The originally proposed pathomechanical model suggests foot motion affects more proximal structures through disruption of distal to proximal coupling between the foot, tibia, femur, and hip. Research evidence supports the presence of a dynamic coupling mechanism between lower limb segments, however, the direction of the coupling is inconclusive.
View Article and Find Full Text PDFJ Sports Sci Med
October 2013
This study profiled beach flags start kinematics for experienced young adult sprinters. Five males and three females (age = 20.8 ± 2.
View Article and Find Full Text PDFSession ratings of perceived exertion (session RPE) are commonly used to assess global training intensity for team sports. However, there is little research quantifying the intensity of field-based training protocols for speed development. The study's aim was to determine the session RPE of popular training protocols (free sprint [FST], resisted sprint [RST], and plyometrics [PT]) designed to improve sprint acceleration over 10 m in team sport athletes.
View Article and Find Full Text PDFA variety of resistance training interventions are used to improve field sport acceleration (e.g., free sprinting, weights, plyometrics, resisted sprinting).
View Article and Find Full Text PDFJ Strength Cond Res
October 2011
Speed and acceleration are essential for field sport athletes. However, the mechanical factors important for field sport acceleration have not been established in the scientific literature. The purpose of this study was to determine the biomechanical and performance factors that differentiate sprint acceleration ability in field sport athletes.
View Article and Find Full Text PDFThis article reviews the potential effects of the female steroid hormone fluctuations during the menstrual cycle on exercise performance. The measurement of estrogen and progesterone concentration to verify menstrual cycle phase is a major consideration in this review. However, even when hormone concentrations are measured, the combination of differences in timing of testing, the high inter- and intra-individual variability in estrogen and progesterone concentration, the pulsatile nature of their secretion and their interaction, may easily obscure possible effects of the menstrual cycle on exercise performance.
View Article and Find Full Text PDF