Generating organs from stem cells through blastocyst complementation is a promising approach to meet the clinical need for transplants. In order to generate rejection-free organs, complementation of both parenchymal and vascular cells must be achieved, as endothelial cells play a key role in graft rejection. Here, we used a lineage-specific cell ablation system to produce mouse embryos unable to form both the cardiac and vascular systems.
View Article and Find Full Text PDFStem Cell Res
September 2023
Transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) is a life-threatening disease caused by the abnormal production of misfolded TTR protein by liver cells, which is then released systemically. Its amyloid deposition in the heart is linked to cardiac toxicity and progression toward heart failure. A human induced pluripotent stem cell (iPSC) line was generated from peripheral blood mononuclear cells (PBMCs) from a patient suffering familial transthyretin amyloid cardiomyopathy carrying a c.
View Article and Find Full Text PDFAged muscles accumulate satellite cells with a striking decline response to damage. Although intrinsic defects in satellite cells themselves are the major contributors to aging-associated stem cell dysfunction, increasing evidence suggests that changes in the muscle-stem cell local microenvironment also contribute to aging. Here, we demonstrate that loss of the matrix metalloproteinase-10 (MMP-10) in young mice alters the composition of the muscle extracellular matrix (ECM), and specifically disrupts the extracellular matrix of the satellite cell niche.
View Article and Find Full Text PDFEach year, tens of thousands of people worldwide die of end-stage organ failure due to the limited availability of organs for use in transplantation. To meet this clinical demand, one of the last frontiers of regenerative medicine is the generation of humanized organs in pigs from pluripotent stem cells (PSCs) via blastocyst complementation. For this, organ-disabled pig models are needed.
View Article and Find Full Text PDFDirect cardiac reprogramming has emerged as an interesting approach for the treatment and regeneration of damaged hearts through the direct conversion of fibroblasts into cardiomyocytes or cardiovascular progenitors. However, in studies with human cells, the lack of reporter fibroblasts has hindered the screening of factors and consequently, the development of robust direct cardiac reprogramming protocols.In this study, we have generated functional human NKX2.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2020
Liver sinusoidal endothelial cells (LSECs) are the first liver cells to encounter waste macromolecules, pathogens, and toxins in blood. LSECs are highly specialized to mediate the clearance of these substances via endocytic scavenger receptors and are equipped with fenestrae that mediate the passage of macromolecules toward hepatocytes. Although some transcription factors (TFs) are known to play a role in LSEC specialization, information about the specialized LSEC signature and its transcriptional determinants remains incomplete.
View Article and Find Full Text PDFIslet-1 (Isl1) is a transcription factor essential for life expressed in specific cells with different developmental origins. We have generated iPSC lines from fibroblasts of the transgenic Ai6 x Isl1-Cre (Ai6IslCre) mouse. Here we describe the complete characterization of four iPSC lines: ATCi-Ai6IslCre10, ATCi-Ai6IslCre35, ATCi-Ai6IslCre74 and ATCi-Ai6IslCre80.
View Article and Find Full Text PDFLymphatic capillary growth is an integral part of wound healing, yet, the combined effectiveness of stem/progenitor cells on lymphatic and blood vascular regeneration in wounds needs further exploration. Stem/progenitor cell transplantation also emerged as an approach to cure lymphedema, a condition caused by lymphatic system deficiency. While lymphedema treatment requires lymphatic system restoration from the capillary to the collector level, it remains undetermined whether stem/progenitor cells support a complex regenerative response across the entire anatomical spectrum of the system.
View Article and Find Full Text PDFWe generated a rat iPSC line called ATCi-rSD95 from transgenic Sprague-Dawley GFP fetal fibroblasts. Established ATCi-rSD95 cells present a normal karyotype, silencing of the transgenes and express pluripotency-associated markers. Additionally, ATCi-rSD95 cells are able to form teratoma with differentiated cells derived from the three germ-layers that maintain the GFP expression.
View Article and Find Full Text PDFWe generated two rat embryonic stem cell (ESC) lines: ATCe-SD7.8 from Sprague-Dawley strain and ATCe-WK1 from Wistar Kyoto strain. Cells were marked with enhanced green fluorescent protein (eGFP) by transduction with a lentiviral vector.
View Article and Find Full Text PDFWe generated ATCi-MF1 induced pluripotent stem (iPS) cell line from Macaca fascicularis adult skin fibroblasts using non-integrative Sendai viruses carrying OCT3/4, KLF4, SOX2 and c-MYC. Once established, ATCi-MF1 cells present a normal karyotype, are Sendai virus-free and express pluripotency associated markers. Microsatellite markers analysis confirmed the origin of the iPS cells from the parental fibroblasts.
View Article and Find Full Text PDFIn early mouse pre-implantation development, primitive endoderm (PrE) precursors are platelet-derived growth factor receptor alpha (PDGFRα) positive. Here, we demonstrated that cultured mouse embryonic stem cells (mESCs) express PDGFRα heterogeneously, fluctuating between a PDGFRα+ (PrE-primed) and a platelet endothelial cell adhesion molecule 1 (PECAM1)-positive state (epiblast-primed). The two surface markers can be co-detected on a third subpopulation, expressing epiblast and PrE determinants (double-positive).
View Article and Find Full Text PDFBackground: In mice MEOX2/TCF15 heterodimers are highly expressed in heart endothelial cells and are involved in the transcriptional regulation of lipid transport. In a general population, we investigated whether genetic variation in these genes predicted coronary heart disease (CHD).
Results: In 2027 participants randomly recruited from a Flemish population (51.
Collateral remodeling is critical for blood flow restoration in peripheral arterial disease and is triggered by increasing fluid shear stress in preexisting collateral arteries. So far, no arterial-specific mediators of this mechanotransduction response have been identified. We show that muscle segment homeobox 1 (MSX1) acts exclusively in collateral arterial endothelium to transduce the extrinsic shear stimulus into an arteriogenic remodeling response.
View Article and Find Full Text PDFPRGF is a platelet concentrate within a plasma suspension that forms an in situ-generated fibrin-matrix delivery system, releasing multiple growth factors and other bioactive molecules that play key roles in tissue regeneration. This study was aimed at exploring the angiogenic and myogenic effects of PRGF on in vitro endothelial cells (HUVEC) and skeletal myoblasts (hSkMb) as well as on in vivo mouse subcutaneously implanted matrigel and on limb muscles after a severe ischemia. Human PRGF was prepared and characterized.
View Article and Find Full Text PDFBackground: Microvascular endothelium in different organs is specialized to fulfill the particular needs of parenchymal cells. However, specific information about heart capillary endothelial cells (ECs) is lacking.
Methods And Results: Using microarray profiling on freshly isolated ECs from heart, brain, and liver, we revealed a genetic signature for microvascular heart ECs and identified Meox2/Tcf15 heterodimers as novel transcriptional determinants.
Endothelial cells (ECs) lining arteries and veins have distinct molecular/functional signatures. The underlying regulatory mechanisms are incompletely understood. Here, we established a specific fingerprint of freshly isolated arterial and venous ECs from human umbilical cord comprising 64 arterial and 12 venous genes, representing distinct functions/pathways.
View Article and Find Full Text PDFEndothelial cell (EC) identity is in part genetically predetermined. Transcription factor NR2F2 (also known as chicken ovalbumin upstream promoter transcription factor II, COUP-TFII) plays a key role in EC fate decision making; however, many of the underlying mechanisms remain enigmatic. In the present study, we demonstrate that NR2F2 differentially regulates gene expression of venous versus lymphatic ECs (LECs) and document a novel paradigm whereby NR2F2 homodimers induce a venous EC fate, while heterodimers with the LEC-specific transcription factor PROX1 instruct LEC lineage specification.
View Article and Find Full Text PDFmiRNAs are small RNA molecules (' 22nt) that interact with their corresponding target mRNAs inhibiting the translation of the mRNA into proteins and cleaving the target mRNA. This second effect diminishes the overall expression of the target mRNA. Several miRNA-mRNA relationship databases have been deployed, most of them based on sequence complementarities.
View Article and Find Full Text PDFTranscription factors play a central role in cell fate determination. Gene targeting in mice revealed that Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII, also known as Nuclear Receptor 2F2 or NR2F2) induces a venous phenotype in endothelial cells (ECs). More recently, NR2F2 was shown to be required for initiating the expression of Prox1, responsible for lymphatic commitment of venous ECs.
View Article and Find Full Text PDFThere is a need for comparative studies to determine which cell types are better candidates to remedy ischemia. Here, we compared human AC133(+) cells and multipotent adult progenitor cells (hMAPC) in a mouse model reminiscent of critical limb ischemia. hMAPC or hAC133(+) cell transplantation induced a significant improvement in tissue perfusion (measured by microPET) 15 days posttransplantation compared to controls.
View Article and Find Full Text PDFJ Mol Med (Berl)
January 2009
Peripheral vascular disease (PVD) is a growing medical problem in Western societies and presents itself mainly in two different clinical forms. Intermittent claudication is an early moderate manifestation, while patients with critical limb ischemia suffer from severe muscle tissue loss or ulcers and are at high risk for limb amputation. Unfortunately, many patients cannot be helped with currently available surgical or endovascular revascularization procedures because of the complex anatomy of the vascular occlusion and/or the presence of other risk factors.
View Article and Find Full Text PDFStem cells are not only a promising in vivo tool for the treatment of diseases characterized by irreversible tissue damage, but can also be exploited as in vitro systems to study the conditions required to generate molecularly and functionally defined cell types. Constructing functional arteries with luminal arterial endothelial cells stabilized by a medial layer of smooth muscle cells is one of the challenges of regenerative medicine. This unit describes the conditions for generating endothelial and smooth muscle cells from multipotent adult progenitor cells (MAPCs).
View Article and Find Full Text PDF