Publications by authors named "X-S Chen"

Background: The decrease in S-nitrosoglutathione reductase (GSNOR) leads to an elevation of S-nitrosylation, thereby exacerbating the progression of cardiomyopathy in response to hemodynamic stress. However, the mechanisms under GSNOR decrease remain unclear. Here, we identify NEDD4 (neuronal precursor cell expressed developmentally downregulated 4) as a novel molecule that plays a crucial role in the pathogenesis of pressure overload-induced cardiac hypertrophy, by modulating GSNOR levels, thereby demonstrating significant therapeutic potential.

View Article and Find Full Text PDF

Background And Purpose: Early identification of malignant cerebral edema (MCE) in patients with acute ischemic stroke is crucial for timely interventions. We aimed to identify regions critically associated with MCE using the Alberta Stroke Program Early Computed Tomography Score (ASPECTS) to evaluate the association between location-specific-net water uptake (NWU) and MCE.

Materials And Methods: This multicentre, retrospective cohort study included patients with acute ischemic stroke following large anterior circulation occlusion.

View Article and Find Full Text PDF

Clinical application of autologous chimeric antigen receptor (CAR)-T cells is complicated by limited targeting of cancer types, as well as the time-consuming and costly manufacturing process. We develop CD70-targeted, induced pluripotent stem cell-derived CAR-natural killer (NK) (70CAR-iNK) cells as an approach for universal immune cell therapy. Besides the CD70-targeted CAR molecule, 70CAR-iNK cells are modified with CD70 gene knockout, a high-affinity non-cleavable CD16 (hnCD16), and an interleukin (IL)-15 receptor α/IL-15 fusion protein (IL15RF).

View Article and Find Full Text PDF

Solid electrolytes (SEs) are crucial for advancing next-generation rechargeable battery technologies, but their commercial viability is partially limited by expensive precursors, unscalable synthesis, or low ionic conductivity. Lithium tetrahaloaluminates offer an economical option but exhibit low Li conductivities with high activation energy barriers. This study reports the synthesis of lithium aluminum chalcohalide (LiAlClS) using inexpensive precursors one-step mechanochemical milling.

View Article and Find Full Text PDF

Developing a catalytic nanoenzyme activated by the tumor microenvironment (TME) shows excellent potential for in situ cancer treatment. However, the rational design of a cascade procedure to achieve high therapeutic efficiency remains challenging. In this study, the colorectal TME-responsive multifunctional cascade nanoenzyme CuO@MnO@glucose oxidase (GOx)@hyaluronic acid (HA) was developed to target in situ cancer starvation/chemodynamic therapy (CDT)/photothermal therapy (PTT).

View Article and Find Full Text PDF

Maintaining blood glucose homeostasis during fasting and feeding is crucial for the prevention of dysregulation that can lead to either hypo- or hyperglycaemia. Here we identified feimin, encoded by a gene with a previously unknown function (B230219D22Rik in mice, C5orf24 in humans), as a key modulator of glucose homeostasis. Feimin is secreted from skeletal muscle during feeding and binds to its receptor, receptor protein tyrosine kinase Mer (MERTK), promoting glucose uptake and inhibiting glucose production by activation of AKT.

View Article and Find Full Text PDF

Background: Whether it is effective and safe to extend the time window of intravenous thrombolysis up to 24 hours after the last known well is unknown. We aimed to determine the efficacy and safety of tenecteplase in Chinese patients with acute ischemic stroke due to large/medium vessel occlusion within an extended time window.

Methods: Patients with ischemic stroke presenting 4.

View Article and Find Full Text PDF

Background: Previous trials have failed to demonstrate the benefits of extracranial-intracranial (EC-IC) bypass surgery for patients with carotid or middle cerebral artery occlusion. However, little evidence has focused on the effect of age on prognosis. This study aimed to explore whether EC-IC bypass surgery can provide greater benefits than medical therapy alone in specific age groups.

View Article and Find Full Text PDF

Approaches that add value to biomass through the use of photoreforming reactions offer great opportunities for the efficient use of renewable resources. Here, we constructed a novel zinc cadmium sulphide/molybdenum dioxide-molybdenum carbide-carbon (ZnCdS-y/MoO-MoC-C) heterojunction which was applied to photoreforming of biomass-based monosaccharides for hydrogen and lactic acid production. Bandgap engineering effectively modulated the redox capacity of ZnCdS-y and exposed more (101) crystalline surfaces, which improved the lactic acid selectivity.

View Article and Find Full Text PDF

Rationale And Objectives: To comprehensively assess the feasibility of low-dose computed tomography (LDCT) using deep learning image reconstruction (DLIR) for evaluating pulmonary subsolid nodules, which are challenging due to their susceptibility to noise.

Materials And Methods: Patients undergoing both standard-dose CT (SDCT) and LDCT between March and June 2023 were prospectively enrolled. LDCT images were reconstructed with high-strength DLIR (DLIR-H), medium-strength DLIR (DLIR-M), adaptive statistical iterative reconstruction-V level 50% (ASIR-V-50%), and filtered back projection (FBP); SDCT with FBP as the reference standard.

View Article and Find Full Text PDF

Hypoxia-inducible factor prolyl hydroxylase (PHD) inhibitors have been approved for treating renal anemia yet have failed clinical testing for inflammatory bowel disease because of a lack of efficacy. Here we used a multimodel multimodal generative artificial intelligence platform to design an orally gut-restricted selective PHD1 and PHD2 inhibitor that exhibits favorable safety and pharmacokinetic profiles in preclinical studies. ISM012-042 restores intestinal barrier function and alleviates gut inflammation in multiple experimental colitis models.

View Article and Find Full Text PDF

WS is an attractive anode in alkali metal ion batteries (AMIBs) due to its 2D-layered structure and high theoretical capacity. However, the shuttle effect of sulfur and the spontaneous growth of W nanoparticles are key issues that limit the alkali-ion accommodation ability. Now, it is still a great challenge to achieve in situ control of the microstructure evolution paths in enclosed batteries for extending the cycling reversibility/lifespan.

View Article and Find Full Text PDF

Background: Currently, validated biomarkers for assessing hemorrhagic transformation (HT) after intravenous thrombolysis (IVT) are lacking. We aimed to validate a test combining GFAP (glial fibrillary acidic protein) and UCH-L1 (ubiquitin C-terminal hydrolase-L1) to indicate the absence of HT after IVT.

Methods: We prospectively enrolled consecutive patients with stroke treated with IVT from 16 hospitals.

View Article and Find Full Text PDF

Bismuth oxychalcogenides (BiOX, X = S, Se, Te), a family of non-van der Waals (non-vdW) two-dimensional (2D) semiconductors, are attracting significant attention due to their outstanding semiconducting properties and huge potential in various applications of electronic and optoelectronic devices. Surface imperfections (, surface vacancies) and surface reconstructions are more likely to appear and may cause intriguing physical properties and novel phenomena in the non-vdW 2D materials than the vdW cases. Here, we explore the impacts of surface vacancies and surface reconstructions on the properties of the surfaces and 2D structures of BiOX by using the first-principles method.

View Article and Find Full Text PDF

Background: The infiltration of macrophages into the lungs is a common characteristic of perivascular inflammation, contributing to vascular remodeling in pulmonary hypertension (PH). Peli1 (pellino E3 ubiquitin-protein ligase 1) plays a critical role in regulating the production of proinflammatory cytokines and the polarization of macrophages in various diseases. However, the role of Peli1 in PH remains to be investigated.

View Article and Find Full Text PDF

Although porcine liver contributes to their growth and development by nutrition production and energy supply, oxidative stress-induced hepatocyte damage is inevitable during metabolism. N-glycosylation is a common modification in oxidation; nevertheless, the effects of N-glycosylation on pig liver oxidative reactions remain undefined. In this study, liver proteins with N-glycosylation were detected in Wuzhishan (WZS) pigs between 4 and 8 months old and Large White (LW) pigs at 4 months old based on LC-MS/MS.

View Article and Find Full Text PDF

Copper sulfide nanoparticles (NPs) synthesized through biomineralization have significant commercial potential as photothermal agents, while the safety evaluation of these NPs, especially for patients with non-alcoholic fatty liver (NAFL), remains insufficient. To explore the differential hepatotoxicity of copper sulfide NPs in NAFL conditions, we synthesized large-sized (LNPs, 15.1 nm) and small-sized (SNPs, 3.

View Article and Find Full Text PDF

Background: Play is an indispensable and meaningful activity in children's daily life. Research has shown that autistic children often exhibit differences in play development. The core traits of autism, such as distinct patterns in social interaction and communication, focused interests, and repetitive behaviors, frequently manifest in their play.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the use of advanced neural network-derived ECG features to predict cardiovascular disease and mortality, aiming to uncover subtle, important indicators that traditional methods might miss.
  • Using data from over 1.8 million patients and various international cohorts, researchers identified three distinct phenogroups, with one, phenogroup B, showing a significantly higher mortality risk—20% more than phenogroup A.
  • The findings suggest that neural network ECG features not only indicate future health risks like atrial fibrillation and ischemic heart disease but also highlight specific genetic loci that may contribute to these risks.
View Article and Find Full Text PDF

Rationale And Objectives: Clinically relevant postoperative pancreatic fistula (CR-POPF) is a threatening complication in body and/or tail pancreatic ductal adenocarcinoma (PDAC) receiving distal pancreatectomy (DP) and is difficult to predict preoperatively. We aimed to identify the role of baseline CT-based body composition analysis and extracellular volume (ECV) map in predicting the risk of CR-POPF preoperatively.

Materials And Methods: A total of 329 resectable PDAC patients were enrolled and underwent multiphasic contrast-enhanced CT.

View Article and Find Full Text PDF

Background: Patients with biliary tract cancer (BTC) often have dismal outcomes due to the poor performance of traditional methods for early diagnosis. Recently, bile cell-free DNA (cfDNA) has been reported as a potential liquid biopsy material for BTC diagnosis. However, bile is a complex alkaline aqueous medium, and the proper storage conditions for bile remain to be explored.

View Article and Find Full Text PDF

A one-step hydrothermal technique was utilized to generate WO nanosheets on fluorine-doped tin oxide (FTO) (WO/FTO), which were subsequently modified with ZnInS microspheres to create a Z-scheme heterojunction ZnInS/WO/FTO electrode for Cu detection. The heterojunction exhibited excellent photoelectric conversion efficiency, which was nearly 2.5-fold and 5.

View Article and Find Full Text PDF

Rationale And Objectives: To establish a multimodal deep learning nomogram for predicting clinically significant prostate cancer in patients with gray-zone PSA levels.

Methods: This retrospective study enrolled 303 patients with pathological results between January 2018 and December 2022. Clinical variables and the PI-RADS v2.

View Article and Find Full Text PDF

The construction of supported Ir-based catalysts can effectively reduce the amount of Ir and generate a synergistic effect that enhances the oxygen evolution reaction (OER) activity and stability, making it one of the effective solutions for optimizing acidic OER catalysts. However, most reported metal oxide supports suffer from poor acid resistance and low electrical conductivity, which are critical for the OER process. Herein, we synthesized a nanosheet-like defected 1T phase-rich MoBS via a molten salt calcination process, during which the 1T phase was formed, and B was intercalated into MoS to protect the 1T phase structure during annealing procedure.

View Article and Find Full Text PDF

Copper sulfide (CuS) sorbent exhibits great potential for gaseous elemental mercury (Hg) decontamination, but it still suffers from a narrow operating temperature. Therefore, designing advanced CuS sorbents that have a high activity level for capturing Hg and thermal stability at a high temperature range is challenging. Herein, we propose a metal doping strategy to fabricate a bimetallic sulfide adsorbent.

View Article and Find Full Text PDF