Publications by authors named "X-P Huang"

Background Multiparametric MRI, including contrast-enhanced sequences, is recommended for evaluating suspected prostate cancer, but concerns have been raised regarding potential contrast agent accumulation and toxicity. Purpose To evaluate the feasibility of generating simulated contrast-enhanced MRI from noncontrast MRI sequences using deep learning and to explore their potential value for assessing clinically significant prostate cancer using Prostate Imaging Reporting and Data System (PI-RADS) version 2.1.

View Article and Find Full Text PDF
Article Synopsis
  • Dual immune checkpoint blockade (ICB) using CTLA4 and PD-(L)1 inhibitors shows improved anti-tumor effectiveness and immune toxicity compared to PD-(L)1 inhibitors alone in advanced non-small-cell lung cancer (NSCLC) patients.
  • Patients with mutations in STK11 and/or KEAP1 genes benefit more from the combination treatment compared to those receiving only PD-(L)1 inhibitors, as shown in the POSEIDON trial.
  • The loss of KEAP1 serves as a strong predictor for the success of dual ICB, as it leads to a more favorable outcome by changing the tumor's immune environment to better engage CD4 and CD8 T cells for anti-tumor activity. *
View Article and Find Full Text PDF

Secondary non-aqueous magnesium-based batteries are a promising candidate for post-lithium-ion battery technologies. However, the uneven Mg plating behavior at the negative electrode leads to high overpotential and short cycle life. Here, to circumvent these issues, we report the preparation of a magnesium/black phosphorus (Mg@BP) composite and its use as a negative electrode for non-aqueous magnesium-based batteries.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how adjusting the nonplanar metal coordination environment can affect the spin state of transition metal-based catalysts, particularly focusing on iron (Fe) in a tetrahedral arrangement altered by phosphorus (P) atoms.
  • As the number of P atoms increases, the spin magnetic moment of the Fe atoms decreases significantly, indicating a linear relationship between P coordination and spin state properties.
  • A strong correlation is found between the spin states of the Fe catalysts and their efficiency in catalyzing the oxygen reduction reaction, with an optimal activity at a medium spin state of 19% yielding a notable half-wave potential of 0.92 V.
View Article and Find Full Text PDF

Transition metal phosphides (TMPs) show promise in water electrolysis due to their electronic structures, which activate hydrogen/oxygen reaction intermediates. However, TMPs face limitations in catalytic efficiency due to insufficient active sites, poor conductivity, and multiple intermediate steps in water electrolysis. Here, we synthesize a highly efficient bifunctional self-supported electrocatalyst, which consists of an N-doped carbon shell anchored on Fe-doped CoP/CoP arrays on nickel foam (NC@Fe-CoP/NF) using hydrothermal and phosphorization techniques.

View Article and Find Full Text PDF

α-N-Methylation (Nα-methylation), catalyzed by protein N-terminal methyltransferases (NTMTs), constitutes a crucial post-translational modification involving the transfer of a methyl group from -adenosyl-l-methionine (SAM) to the Nα-terminal amino group of substrate proteins. NTMT1/2 are known to methylate canonical Nα sequences, such as X-P-K/R. With over 300 potential human protein substrates, only a small fraction has been validated, and even less is known about the functions of Nα-methylation.

View Article and Find Full Text PDF

Developing earth-abundant transition metal electrodes with high activity and durability is crucial for efficient and cost-effective hydrogen production. However, numerous studies in the hydrogen evolution reaction (HER) primarily focus on improving the inherent activity of catalysts, and the critical influence of gas-liquid countercurrent transport behavior is often overlooked. In this study, we introduce the concept of separate-path gas-liquid transport to alleviate mass transport losses for the HER by developing a novel hierarchical porous Ni-doped cobalt phosphide electrode (CoNi-P@Ni).

View Article and Find Full Text PDF

ZnSO-based electrolytes for aqueous zinc ion batteries fail to meet practical application metrics due to hydrogen evolution reaction (HER) and dendrite growth. In this work, a highly polarized eutectic additive, glycerophosphorylcholine (GPC) is rationally designed, to regulate the electric double layer (EDL) structure for stable Zn anodes with a high depth of discharge (DOD). On one hand, GPC molecules with abundant hydroxyl groups can precisely regulate the hydrogen bond network in EDL to suppress HER.

View Article and Find Full Text PDF

ATLAS measured the centrality dependence of the dijet yield using 165  nb^{-1} of p+Pb data collected at sqrt[s_{NN}]=8.16  TeV in 2016. The event centrality, which reflects the p+Pb impact parameter, is characterized by the total transverse energy registered in the Pb-going side of the forward calorimeter.

View Article and Find Full Text PDF

Gene-encoded aldehyde tag technology has been widely utilized in protein bioorthogonal chemistry and biotechnological application. Herein, we report utilization of the promiscuous rSAM cyclophane synthase SjiB involved in triceptide biosynthesis as a dedicated and highly efficient formylglycine synthase. The new aldehyde tag sequence in this system, YQSSI, is biosynthetically orthogonal to the known aldehyde tag (C/S)x(P/A)xR.

View Article and Find Full Text PDF

Local electronic structure engineering is an effective approach for optimizing the catalytic performance of electrocatalysts. Herein, a dual-phase vanadium-doped nickel phosphide (NiVP) catalyst supported on nickel foam (NF) was synthesized via a successive hydrothermal and phosphorization process with interconnected nanosheet structures and homogeneous distributions. The catalyst's stable phase and strong adhesion to the substrate ensure good electrochemical stability.

View Article and Find Full Text PDF

Rationale And Objectives: Tumor progression and recurrence(P/R)after surgical resection are common in meningioma patients and can indicate poor prognosis. This study aimed to investigate the values of clinicopathological information and preoperative magnetic resonance imaging (MRI) radiomics in predicting P/R and progression-free survival (PFS) in meningioma patients.

Methods And Materials: A total of 169 patients with pathologically confirmed meningioma were included in this study, 54 of whom experienced P/R.

View Article and Find Full Text PDF

The rapid recombination of charge carriers in semiconductor-based photocatalysts results in a low photocatalytic activity. Co-catalysis is considered a promising strategy to improve the photocatalytic performance of semiconductors. In this study, a bimetallic phosphide was grown by a facile growth method.

View Article and Find Full Text PDF

Borophene, the lightest two-dimensional material, exhibits exceptional storage capacity as an anode material for sodium-ion batteries (NIBs) and potassium-ion batteries (PIBs). However, the pronounced surface activity gives rise to strong interfacial bonding between borophene and the metal substrate it grows on. Incorporation of heterogeneous atoms capable of forming strong bonds with boron to increase borophene stability while preserving its intrinsic metallic conductivity and high theoretical capacity remains a great challenge.

View Article and Find Full Text PDF

Two-dimensional superconductivity is primarily realized in atomically thin layers through extreme exfoliation, epitaxial growth, or interfacial gating. Apart from their technical challenges, these approaches lack sufficient control over the Fermiology of superconducting systems. Here, we offer a Fermiology-engineering approach, allowing us to desirably tune the coherence length of Cooper pairs and the dimensionality of superconducting states in arsenic phosphides AsP under hydrostatic pressure.

View Article and Find Full Text PDF

Transition metal phosphides (TMPs) with unique metalloid features have been promised great application potential in developing high-efficiency electrode materials for electrochemical energy storage. Nevertheless, sluggish ion transportation and poor cycling stability are the critical hurdles limiting their application prospects. Herein, we presented the metal-organic framework-mediated construction of ultrafine NiP immobilized in reduced graphene oxide (rGO).

View Article and Find Full Text PDF
Article Synopsis
  • The phase III clinical trial evaluated the safety and immune response of a new rabies vaccine (PVRV-WIBP) among participants aged 10-50 years, with 40 subjects in stage 1 and 1956 in stage 2.
  • Most adverse reactions were mild to moderate, resolving within a week post-injection, and both 4- and 5-dose regimens of PVRV-WIBP led to complete seroconversion within 14 days.
  • PVRV-WIBP demonstrated comparable effectiveness to another vaccine (PVRV-LNCD) in generating antibody responses, suggesting it could be a viable alternative for rabies post-exposure treatment.
View Article and Find Full Text PDF

High serum phosphate levels in chronic kidney disease (CKD) are linked to adverse health outcomes, including cardiovascular disease, kidney disease progression, and all-cause mortality. This study is aimed to find out which microorganisms or microbial functions have a significant impact on higher calcium-phosphorus product (Ca x P) after they undergo hemodialysis (HD) treatment. samples from 30 healthy controls, 15 dialysis patients with controlled Ca xP (HD), and 16 dialysis patients with higher Ca xP (HDHCP) were collected to perform in 16S amplicon sequencing.

View Article and Find Full Text PDF

Background: Aortic dissection (AD) is a fatal cardiovascular disorder without effective medications due to unclear pathogenic mechanisms. Bestrophin3 (Best3), the predominant isoform of bestrophin family in vessels, has emerged as critical for vascular pathological processes. However, the contribution of Best3 to vascular diseases remains elusive.

View Article and Find Full Text PDF

The introduction of electrolyte additives is one of the most potential strategies to improve the performance of potassium metal batteries (PMBs). However, designing an additive that can alter the K solvation shell and essentially inhibit K dendrite remains a challenge. Herein, the amyl-triphenyl-phosphonium bromide was introduced as an additive to build a stable solid electrolyte interphase layer.

View Article and Find Full Text PDF

Black arsenic-phosphorus (b-AsP), an alloy containing black phosphorus and arsenic in the form of b-AsP, has a broadly tunable band gap changing with the chemical ratios of As and P. Although mid-infrared photodetectors and mode-locked or Q-switched pulse lasers based on b-AsP (mostly b-AsP) are investigated, the potential of this family of materials for near-infrared photonic and optoelectronic applications at telecommunication bands is not fully explored. Here, we have verified a multifunctional fiber device based on b-AsP nanosheets for highly responsive photodetection and dual-wavelength ultrafast pulse generation at around 1550 nm.

View Article and Find Full Text PDF

Protein kinase-mediated phosphorylation plays a critical role in many biological processes. However, the identification of key regulatory kinases is still a great challenge. Here, we develop a trans-omics-based method, central kinase inference, to predict potentially key kinases by integrating quantitative transcriptomic and phosphoproteomic data.

View Article and Find Full Text PDF

Recently, wearable hydrogel sensors based on polypyrrole have shown considerable promise in the realms of human-machine interfaces. However, because of the water insolubility of pyrrole and polypyrrole, the preparation of polypyrrole conductive hydrogels with comprehensive properties by a simplified method remains a great challenge. Herein, the water-soluble polypyrrole was synthesized and the conformal CP conductive hydrogels were fabricated by the strategy of one-pot method of introducing chitosan and water-soluble polypyrrole into acrylamide matrix containing cucurbit[7]uril.

View Article and Find Full Text PDF
Article Synopsis
  • - Upland rice is a special type of rice that grows in dry conditions and can withstand drought, but the genes responsible for this drought resistance were previously unknown.
  • - Researchers discovered a gene called DROUGHT1 (DROT1), which helps enhance drought resistance by modifying cell wall properties, and identified its regulation by specific drought-responsive factors.
  • - A particular genetic variation in DROT1 boosts its expression and drought resistance in upland rice, suggesting that using this elite haplotype from wild rice could support better breeding practices for upland rice.
View Article and Find Full Text PDF