Publications by authors named "X-N Ouyang"

Visible-light photooxidation sensitized by surface attachment of small colorless organics on semiconductor photocatalysts has emerged as an economical method for photocatalytic synthesis or degradation. In particular, heteroatom (X = N and Cl)-containing substrates could undergo either C-N coupling or dechlorination degradation sensitizing TiO, but the mechanism in conducting the competitive visible-light sensitized photooxidations is still vague. Herein, the visible-light photooxidation of colorless 4-chlorobenzene-1,2-diamine (-CAN) on TiO was revealed, contributing to selective C-N coupling rather than dechlorination.

View Article and Find Full Text PDF

The negative Poisson's ratio (NPR) effect usually endows materials with promising ductility and shear resistance, facilitating a wider range of applications. It has been generally acknowledged that alloys show strong advantages in manipulating material properties. Thus, a thought-provoking question arises: how does alloying affect the NPR? In this paper, based on first-principles calculations, we systematically study the NPR in two-dimensional (2D) GaN and AlN, and their alloy of AlGaN.

View Article and Find Full Text PDF

Aberrant RNA splicing in keratinocytes drives inflammatory skin disorders. In the present study, we found that the RNA helicase DDX5 was downregulated in keratinocytes from the inflammatory skin lesions in patients with atopic dermatitis and psoriasis, and that mice with keratinocyte-specific deletion of Ddx5 (Ddx5) were more susceptible to cutaneous inflammation. Inhibition of DDX5 expression in keratinocytes was induced by the cytokine interleukin (IL)-17D through activation of the CD93-p38 MAPK-AKT-SMAD2/3 signaling pathway and led to pre-messenger RNA splicing events that favored the production of membrane-bound, intact IL-36 receptor (IL-36R) at the expense of soluble IL-36R (sIL-36R) and to the selective amplification of IL-36R-mediated inflammatory responses and cutaneous inflammation.

View Article and Find Full Text PDF

Capabilities in continuous monitoring of key physiological parameters of disease have never been more important than in the context of the global COVID-19 pandemic. Soft, skin-mounted electronics that incorporate high-bandwidth, miniaturized motion sensors enable digital, wireless measurements of mechanoacoustic (MA) signatures of both core vital signs (heart rate, respiratory rate, and temperature) and underexplored biomarkers (coughing count) with high fidelity and immunity to ambient noises. This paper summarizes an effort that integrates such MA sensors with a cloud data infrastructure and a set of analytics approaches based on digital filtering and convolutional neural networks for monitoring of COVID-19 infections in sick and healthy individuals in the hospital and the home.

View Article and Find Full Text PDF

Background: Whether combined transplantation of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) is more effective than transplantation of a single cell type in the restoration of erectile function is unknown.

Aim: To investigate the effect of combined transplantation of MSCs and EPCs on restoration of erectile function in rats with cavernous nerve injury (CNI).

Methods: MSCs were isolated from human bone marrow and EPCs were isolated from human umbilical cord blood.

View Article and Find Full Text PDF

Aluminum-nitrogen six-fold octahedral coordination, [AlN ], is unusual and has only been seen in the high-pressure rocksalt-type aluminum nitride or some complex compounds. Herein we report novel nitrides LnAl(Si Al )N O (Ln=La, Sm), the first inorganic compounds with [AlN ] coordination prepared via non-high-pressure synthesis. Structure refinements of neutron powder diffraction and single-crystal X-ray diffraction data show that these compounds crystallize in the hexagonal Swedenborgite structure type with P6 mc symmetry where Ln and Al atoms locate in anticuboctahedral and octahedral interstitials, respectively, between the triangular and Kagomé layers of [SiN ] tetrahedra.

View Article and Find Full Text PDF

The search for active semiconductor photocatalysts that directly split water under visible-light irradiation remains one of the most challenging tasks for solar-energy utilization. Over the past 30 years, the search for such materials has focused mainly on metal-ion substitution as in In(1-x)Ni(x)TaO(4) and (V-,Fe- or Mn-)TiO(2) (refs 7,8), non-metal-ion substitution as in TiO(2-x)N(x) and Sm(2)Ti(2)O(5)S(2) (refs 9,10) or solid-solution fabrication as in (Ga(1-x)Zn(x))(N(1-x)O(x)) and ZnS-CuInS(2)-AgInS(2) (refs 11,12). Here we report a new use of Ag(3)PO(4) semiconductor, which can harness visible light to oxidize water as well as decompose organic contaminants in aqueous solution.

View Article and Find Full Text PDF