The isolation of nucleophilic boron bases has led to a paradigm shift in boron chemistry. Previous studies of the bis(carbene) borylene complexes revealed that these compounds possess strong donor abilities, and their reaction inertness is due to the large steric hindrance between boron reagents and reactant. In the present study, we have theoretically studied the [(N)BX] and [(N)BX] compounds (X = H, F, Cl, Br).
View Article and Find Full Text PDFElectrocatalytic biomass conversion offers a sustainable route for producing organic chemicals, with electrode design being critical to determining reaction rate and selectivity. Herein, a prediction-synthesis-validation approach is developed to obtain electrodes for precise biomass conversion, where the coexistence of multiple metal valence states leads to excellent electrocatalytic performance due to the activated redox cycle. This promising integrated foam electrode is developed via acid-induced surface reconstruction to in situ generate highly active metal (oxy)hydroxide or oxide (MOH or MO) species on inert foam electrodes, facilitating the electrooxidation of 5-hydroxymethylfurfural (5-HMF) to 2,5-furandicarboxylic acid (FDCA).
View Article and Find Full Text PDFWater electrolysis suffers from electron transfer barriers during oxygen evolution reactions, which are spin-related for magnetic materials. Here, the electron transfer at the Fe_{64}Ni_{36}-FeNiO_{x}H_{y} interface is effectively accelerated when the electrode is heated to trigger the Invar effect in Fe_{64}Ni_{36} Invar alloy, providing more unoccupied orbitals as electron transfer channels without pairing energy. As a result of thermally stimulated changes in electronic states, Fe_{64}Ni_{36}/FeNiO_{x}H_{y} achieved a cascaded oxidation of the catalytic center and water.
View Article and Find Full Text PDFThe exploration of two-dimensional (2D) metallenes is driven by their noteworthy attributes, encompassing high conductivity and substantial exposure of metal active sites, facilitating the development of nitrogen reduction reaction (NRR) electrocatalysts characterized by a low overpotential and superior selectivity. Here, employing first-principles swarm-intelligence structural search methods, we predict molybdenene as a novel and stable non-precious metallene, featuring a 2-atom-thick structure. Our findings demonstrate that the basal plane of molybdenene showcases remarkable catalytic activity with an overpotential of 0.
View Article and Find Full Text PDFBackground: The effect of embolization of the middle meningeal artery in patients with subacute or chronic subdural hematoma is uncertain.
Methods: We performed a multicenter, open-label, randomized trial in China, involving patients with symptomatic nonacute subdural hematoma with mass effect. Patients were assigned to undergo burr-hole drainage or receive nonsurgical treatment at the surgeon's discretion, and patients in each group were then randomly assigned, in a 1:1 ratio, to undergo middle meningeal artery embolization with liquid embolic material or to receive usual care.
To realize large-scale production of hydrogen through seawater electrolysis, it is highly crucial to engineer high-activity and robustly stable catalytic materials for oxygen evolution reaction (OER). Here, a facile etching growth strategy based on Ni foam (NF) is employed to fabricate an amorphous/crystalline Ni-Fe based electrode with rich oxygen vacancies as a promising OER electrocatalyst (a/c-NiFeOH@NF). Of note, the introduction of Fe induces the generation of plentiful Ni(Fe)OOH species, which can contribute to the remarkable OER behavior.
View Article and Find Full Text PDFDisulfide is an important organic reagent and synthetic intermediate that is widely used in organic synthesis, polymers, and other fields, but its synthesis still suffers from many environmental pollution and economic problems. Here, we present an environmentally friendly and efficient base-free aerobic oxidative thiol coupling catalyzed by heterogeneous CoO nanoclusters entrapped in hierarchical silicalite-1 zeolite, synthesized by combining silane pore expansion and metal coordination methods under hydrothermal conditions. It is confirmed that open hierarchical channels favor mass diffusion, and the chemical valence of Co species in CoO/-S-1-H is +2, which is different from that of CoO particles in CoO/-S-1-I.
View Article and Find Full Text PDFThe transition metal with high valence state in oxyhydroxides can accelerate the reaction kinetics, enabling highly intrinsic OER activity. However, the formation of high-valence transition-metal ions is thermodynamically unfavorable in most cases. Here, a novel strategy is proposed to realize the purpose and reveal the mechanism by constructing amorphous phase and incorporating of elements with the characteristic of Lewis acid or variable charge state.
View Article and Find Full Text PDFIn this study, state-of-the-art on-line pyrolysis MS (OP-MS) equipped with temperature-controlled cold trap and on-line pyrolysis GC/MS (OP-GC/MS) injected through high-vacuum negative-pressure gas sampling (HVNPGS) programming are originally designed/constructed to identify/quantify the dynamic change of common permanent gases and micromolecule organics from the anode/cathode-electrolyte reactions during thermal runaway (TR) process, and corresponding TR mechanisms are further perfected/complemented. On LiC anode side, solid electrolyte interphase (SEI) would undergo continuous decomposition and regeneration, and the R-H (e.g.
View Article and Find Full Text PDFBackground: Aging is one of the most potent risk determinants for the onset of atrial fibrillation (AF). Sirts (sirtuins) have been implicated in the pathogenesis of cardiovascular disease, and their expression declines with aging. However, whether Sirts involved in age-related AF and its underlying mechanisms remain unknown.
View Article and Find Full Text PDFBackground: Immune checkpoint inhibitors (ICIs) provide modest but unsatisfactory benefits for extensive-stage small cell lung cancer (ES-SCLC). Developing strategies for treating ES-SCLC is critical.
Methods: We preliminarily explored the outcomes of salvage low-dose radiotherapy (LDRT) plus ICI on refractory SCLC patients.
Rationale And Objectives: To investigate the potential of T1-weighted imaging (T1WI)-based hippocampal radiomics as imaging markers for the diagnosis of Alzheimer's disease (AD) and their efficacy in discriminating between mild cognitive impairment (MCI) and dementia in AD.
Methods: A total of 126 AD patients underwent T1WI-based magnetic resonance imaging (MRI) examinations, along with 108 age-sex-matched healthy controls (HC). This was a retrospective, single-center study conducted from November 2021 to February 2023.
The article "LncRNA UCA1 affects osteoblast proliferation and differentiation by regulating BMP-2 expression", by R.-F. Zhang, J.
View Article and Find Full Text PDFThe adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low-cost fabrication process to achieve high-quality 2D SiH and GeH poses challenges.
View Article and Find Full Text PDFBackground Right atrial (RA) function strain is increasingly acknowledged as an important predictor of adverse events in patients with diverse cardiovascular conditions. However, the prognostic value of RA strain in patients with dilated cardiomyopathy (DCM) remains uncertain. Purpose To evaluate the prognostic value of RA strain derived from cardiac MRI (CMR) feature tracking (FT) in patients with DCM.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2024
Nickel-iron oxy/hydroxides (NiFeOH) emerge as an attractive type of electrocatalysts for alkaline water oxidation reaction (WOR), but which encounter a huge challenge in stability, especially at industrial-grade large current density due to uncontrollable Fe leakage. Here, we tailor the Fe coordination by a MXene-mediated reconfiguration strategy for the resultant NiFeOH catalyst to alleviate Fe leakage and thus reinforce the WOR stability. The introduction of ultrafine MXene with surface dangling bonds in the electrochemical reconfiguration over Ni-Fe Prussian blue analogue induces the covalent hybridization of NiFeOH/MXene, which not only accelerates WOR kinetics but also improves Fe oxidation resistance against segregation.
View Article and Find Full Text PDFBackground: The mRNA vaccine has demonstrated significant effectiveness in protecting against SARS-CoV-2 during the pandemic, including against severe forms of the disease caused by emerging variants. In this study, we examined safety, immunogenicity, and relative efficacy of a heterologous booster of the lipopolyplex (LPP)-based mRNA vaccine (SW-BIC-213) versus a homologous booster of an inactivated vaccine (BBIBP) in Laos.
Methods: In this phase 3 clinical trial, which was randomized, parallel controlled and double-blinded, healthy adults aged 18 years and above were recruited from the Southern Savannakhet Provincial Hospital and Champhone District Hospital.
Rationale And Objectives: This study aims to develop and validate a computed tomography (CT)-based radiomics nomogram for pre-operatively predicting central lymph node metastasis (CLNM) in patients with papillary thyroid microcarcinoma (PTMC) and explore the underlying biological basis by using RNA sequencing data.
Methods: This study trained 452 PTMC patients across two hospitals from January 2012 to December 2020. The sets were randomly divided into the training (n = 339), internal test (n = 86), external test (n = 27) sets.
Fluorescence microscopy allows for the high-throughput imaging of cellular activity across brain areas in mammals. However, capturing rapid cellular dynamics across the curved cortical surface is challenging, owing to trade-offs in image resolution, speed, field of view and depth of field. Here we report a technique for wide-field fluorescence imaging that leverages selective illumination and the integration of focal areas at different depths via a spinning disc with varying thickness to enable video-rate imaging of previously reconstructed centimetre-scale arbitrarily shaped surfaces at micrometre-scale resolution and at a depth of field of millimetres.
View Article and Find Full Text PDFBackground: A better understanding of the molecular mechanism of aortic valve development and bicuspid aortic valve (BAV) formation would significantly improve and optimize the therapeutic strategy for BAV treatment. Over the past decade, the genes involved in aortic valve development and BAV formation have been increasingly recognized. On the other hand, (a disintegrin and metalloproteinase with thrombospondin motifs) gene family members have been reported to be able to modulate cardiovascular development and diseases.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2024
Background: Hyperglycemia-a symptom that characterizes diabetes-is highly associated with atherothrombotic complications. However, the underlying mechanism by which hyperglycemia fuels platelet activation and arterial thrombus formation is still not fully understood.
Methods: The profiles of polyunsaturated fatty acid metabolites in the plasma of patients with diabetes and healthy controls were determined with targeted metabolomics.
Background: The importance of mitochondria in normal heart function are well recognized and recent studies have implicated changes in mitochondrial metabolism with some forms of heart disease. Previous studies demonstrated that knockdown of the mitochondrial ribosomal protein S5 (MRPS5) by small interfering RNA (siRNA) inhibits mitochondrial translation and thereby causes a mitonuclear protein imbalance. Therefore, we decided to examine the effects of MRPS5 loss and the role of these processes on cardiomyocyte proliferation.
View Article and Find Full Text PDFIt is widely acknowledged that interface engineering strategies can significantly enhance the activity of catalysts. In this study, we developed a CoMoP nanoarray directly grown on a nickel foam (NF) substrate, with the interface structure formed through the electrodeposition of MnOH. The resulting heterostructure MnOH/CoMoP/NF exhibited remarkable hydrogen evolution reaction (HER) activity, achieving overpotentials as low as 61 and 138 mV at 10 and 100 mA cm, respectively.
View Article and Find Full Text PDF