Publications by authors named "X Y Cheng"

Various genetic association studies have identified numerous single nucleotide polymorphisms (SNPs) associated with nasopharyngeal carcinoma (NPC) risk. However, these studies have predominantly focused on common variants, leaving the contribution of rare variants to the "missing heritability" largely unexplored. Here, we integrate genotyping data from 3,925 NPC cases and 15,048 healthy controls to identify a rare SNP, rs141121474, resulting in a Glu510Lys mutation in KLHDC4 gene linked to increased NPC risk.

View Article and Find Full Text PDF

Asymmetric supercapacitors (ASCs), which combine the advantages of electric double-layer capacitors and pseudocapacitors, have attracted more and more research interest. However, the performance of water-based ASCs often faces the challenge of electrolyte freezing at low temperatures. To resolve the problem, a ternary deep eutectic solvent (DES) with an eutectic point of less than -100 °C was first prepared.

View Article and Find Full Text PDF

Infectious diseases are extremely important public health issues, where the design of effective, rapid, and convenient detection platforms is critical. In this study, we coupled SuCas12a2, a novel Cas12 family RNA-targeting nuclease, with conventional PCR and recombinase polymerase amplification (RPA), respectively, to develop novel detection approaches, named PCR-SuCas12a2 and RPA-SuCas12a2. SuCas12a2 possesses collateral cleavage activity and cuts the additional single-stranded RNA (ssRNA) added to the reaction system once the ternary complex RNA-SuCas12a2-CRISPR RNA (crRNA) is formed.

View Article and Find Full Text PDF

Randomly moving active particles can be herded into directed motion by asymmetric geometric structures. Although such a rectification process has been extensively studied due to its fundamental, biological, and technological relevance, a comprehensive understanding of active matter rectification based on single particle dynamics remains elusive. Here, by combining experiments, simulations, and theory, we study the directed transport and energetics of swimming bacteria navigating through funnel-shaped obstacles-a paradigmatic model of rectification of living active matter.

View Article and Find Full Text PDF

We describe the design and performance of a magnetic bottle electron spectrometer (MBES) for high-energy electron spectroscopy. Our design features a 2 m long electron drift tube and electrostatic retardation lens, achieving sub-electronvolt (eV) electron kinetic energy resolution for high energy (several hundred eV) electrons with a close to 4π collection solid angle. A segmented anode electron detector enables the simultaneous collection of photoelectron spectra in high resolution and high collection efficiency modes.

View Article and Find Full Text PDF