Publications by authors named "X X Liu"

NO-N transformation, the vital biological process, determines nitrogen removal and retention in aquatic environment. Suspended sediment (SPS) ubiquitous in freshwater ecosystems can accelerate the transitions from aerobic to anoxic states, inevitably impacting NO-N transformation. To elaborate on the microbial mechanism by which SPS content affected NO-N transformation, we explored nitrogen removal and retention, microbial communities, co-occurrence networks, and electron transfer behavior under different SPS content during the aerobic-anoxic transition.

View Article and Find Full Text PDF

Bayer red mud is a highly alkaline industrial solid waste generated during alumina production, and its massive discharge and stockpiling poses significant environmental risks. The strong alkalinity of red mud is a primary challenge limiting its effective utilization. This study systematically analyzes the composition and characteristics of alkaline components in red mud, emphasizing the roles of soluble free alkali and chemically bound alkali in regulating its alkalinity.

View Article and Find Full Text PDF

Background: High-quality bowel preparation is paramount for a successful colonoscopy. This study aimed to explore the effect of artificial intelligence-driven smartphone software on the quality of bowel preparation.

Methods: Firstly, we utilized 3305 valid liquid dung images collected mobile phones as training data.

View Article and Find Full Text PDF

Background: Peritoneal dissemination of ovarian cancer (OvCa) can be largely attributed to the formation of a metastatic microenvironment driven by tumoral exosomes. Here, we aimed to elucidate the mechanisms through which exosomal annexin A2 (ANXA2) derived from OvCa cells induces an HPMC phenotypic shift in favour of peritoneal metastasis.

Methods: Immunohistochemistry and orthotopic and intraperitoneal OvCa xenograft mouse models were used to clarify the relationship between tumour ANXA2 expression and peritoneal metastasis.

View Article and Find Full Text PDF

Background: Central obesity and breast cancer (BC) have been identified as relevant by empirical research. The weight-adjusted-waist index (WWI) is a novel methodology for quantifying central obesity. Inspection of the association between WWI and BC in American adult women was the primary goal of the current investigation.

View Article and Find Full Text PDF