Publications by authors named "X Torrelles"

Metal-oxide aqueous interfaces are important in areas as varied as photocatalysis and mineral reforming. Crucial to the chemistry at these interfaces is the structure of the electrical double layer formed when anions or cations compensate for the charge arising from adsorbed H or OH. This has proven extremely challenging to determine at the atomic level.

View Article and Find Full Text PDF

Owing to the importance of the single-wavelength anomalous diffraction (SAD) technique, the recently developed |ρ|-based phasing algorithm (S) incorporating the inner-pixel preservation (ipp) procedure [Rius & Torrelles (2021). Acta Cryst A77, 339-347] has been adapted to the determination of anomalous scattering substructures and its applicability tested on a series of 12 representative experimental data sets, mostly retrieved from the Protein Data Bank. To give an idea of the suitability of the data sets, the main indicators measuring their quality are also given.

View Article and Find Full Text PDF

The incorporation of the new peakness-enhancing fast Fourier transform compatible ipp procedure (ipp = inner-pixel preservation) into the recently published S algorithm based on |ρ| [Rius (2020). Acta Cryst A76, 489-493] improves its phasing efficiency for larger crystal structures with atomic resolution data. Its effectiveness is clearly demonstrated via a collection of test crystal structures (taken from the Protein Data Bank) either starting from random phase values or by using the randomly shifted modulus function (a Patterson-type synthesis) as initial ρ estimate.

View Article and Find Full Text PDF

MgO ultrathin films are of great technological importance as electron tunneling barrier in electronics and spintronics, and as template for metallic clusters in catalysis and for molecular networks for 2D electronics. The wide band-gap of MgO allows for a very effective decoupling from the substrate. The films morphology and the detailed structure of the interface are crucial for applications, controlling the electronic transfer.

View Article and Find Full Text PDF

The surface structure of fluoroapatite (0001) (FAp) under quasi-dry and humid conditions has been probed with surface X-ray diffraction (SXRD). Lateral and perpendicular atomic relaxations corresponding to the FAp termination before and after HO exposure and the location of the adsorbed water molecules have been determined from experimental analysis of the crystal truncation rod (CTR) intensities. The surface under dry conditions exhibits a bulk termination with relaxations in the outermost atomic layers.

View Article and Find Full Text PDF