Objectives: The present study aimed to assess the influence of dental occlusion on body posture and the competitive performance of young elite rowers.
Method: Dental occlusion disturbance devices were used to simulate dental malocclusions. We assessed the influence of malocclusion on the body balance, paravertebral muscle contraction symmetry, and muscular power of young elite rowers.
This study reports the in vitro biocompatibility of a composite biomaterial composed of 46S6 bioactive glass in association with chitosan (CH) by using 3D osteoblast culture of SaOS2. The 46S6 and CH composite (46S6-CH) forms small hydroxyapatite crystals on its surface after only three days immersion in the simulated body fluid. For 2D osteoblast culture, a significant increase in cell proliferation was observed after three days of contact with 46S6 or 46S6-CH-immersed media.
View Article and Find Full Text PDFKinetics of phosphoryl transfers from PCr to gamma-ATP and from beta-ATP to beta-ADP were measured by magnetization transfer in an in vivo 31P NMR experiment in working rat skeletal hind leg muscles. Two groups were examined. One group was submitted to a 6-week training program of treadmill running.
View Article and Find Full Text PDFMetabolic and mechanical properties of female rat skeletal muscles, submitted to endurance training on a treadmill, were studied by a 60-min in vivo multistep fatigue test. 31P-NMR was used to follow energy metabolism and pH. Mechanical performance was greatly improved in trained muscles.
View Article and Find Full Text PDFMechanical properties and metabolic adaptation to exercise in skeletal muscle of dystrophic hamsters were studied with an in vivo 31P-NMR multistep fatigue test. Three successive 20-min steps with increasing rhythms of tetanic stimulation were followed by a 20-min recovery period. Fatigue in dystrophic hamsters (DH) developed more rapidly and was greater than in normal hamsters (NH); total mechanical performance per min increased step by step in NH while it decreased in DH, showing a progressive mechanical impairment of the dystrophic muscles.
View Article and Find Full Text PDF