Surface-enhanced Raman scattering (SERS) stands out as a highly effective molecular identification technique, renowned for its exceptional sensitivity, specificity, and non-destructive nature. It has become a main technology in various sectors, including biological detection and imaging, environmental monitoring, and food safety. With the development of material science and the expansion of application fields, SERS substrate materials have also undergone significant changes: from precious metals to semiconductors, from single crystals to composite particles, from rigid to flexible substrates, and from two-dimensional to three-dimensional structures.
View Article and Find Full Text PDFOff-seasonal water level regulations disrupt the biological traits and phenological rhythms of native fish species, yet their impacts on interspecific trophic interactions remain understudied. This study employed stable isotope analysis to assess the trophic dynamics of three fish species (, , and ) across different water periods in Hongze Lake. The findings revealed that all three species occupied similar mid-level trophic positions, with no significant difference among water periods ( > 0.
View Article and Find Full Text PDFDisruption of the glymphatic system plays a vital role in pathogenesis of neurodegeneration in normal tension glaucoma (NTG). We evaluated the impairment of glymphatic system of NTG patients by diffusion tensor image analysis along the perivascular space (DTI-ALPS), and explored the correlation between the ALPS index and dysfunction of visual cortices in resting state. DTI-ALPS was applied to 37 normal controls (NCs) and 37 NTG patients.
View Article and Find Full Text PDFHierarchical syntactic structure processing is proposed to be at the core of the human language faculty. Syntactic processing is supported by the left fronto-temporal language network, including a core area in the inferior frontal gyrus as well as its interaction with the posterior temporal lobe (i.e.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
MoCT MXenes have great potential for multifunctional energy storage applications because of their outstanding electrical conductivity, superior cycling stability, and high optical transmittance. In this study, we fabricate MoCT film electrodes (referred to as MoC) on fluorine-doped tin oxide (FTO) substrates using the layer-by-layer (LbL) self-assembly technique. To improve the energy-storage performance of MoCT film electrodes, we develop a convenient electrochemical activation process to prepare in situ oxidized MoCT/MoO film electrodes (referred to as EA-MoC).
View Article and Find Full Text PDF