Full self-consistent stationary Vlasov-Maxwell solutions of magnetically confined plasmas are built for systems with cylindrical symmetries. The stationary solutions are thermodynamic equilibrium solutions. These are obtained by computing the equilibrium distribution function resulting from maximizing the entropy and closing the equations with source terms that are then computed by using the obtained distribution.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2015
The influence of networks topology on collective properties of dynamical systems defined upon it is studied in the thermodynamic limit. A network model construction scheme is proposed where the number of links and the average eccentricity are controlled. This is done by rewiring links of a regular one-dimensional chain according to a probability p within a specific range r that can depend on the number of vertices N.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2014
In this paper we characterize the mixing properties in the advection of passive tracers by exploiting the extreme value theory for dynamical systems. With respect to classical techniques directly related to the Poincaré recurrences analysis, our method provides reliable estimations of the characteristic mixing times and distinguishes between barriers and unstable fixed points. The method is based on a check of convergence for extreme value laws on finite datasets.
View Article and Find Full Text PDFWe study the motion of a charged particle in a tokamak magnetic field and discuss its chaotic nature. Contrary to most of recent studies, we do not make any assumption on any constant of the motion and solve numerically the cyclotron gyration using Hamiltonian formalism. We take advantage of a symplectic integrator allowing us to make long-time simulations.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2013
We study the XY rotors model on small networks whose number of links scales with the system size N(links)~N(γ), where 1≤γ≤2. We first focus on regular one-dimensional rings in the microcanonical ensemble. For γ<1.
View Article and Find Full Text PDF