Recently, transdermal monitoring and drug delivery have gained much interest, owing to the introduction of the minimally invasive microneedle (MN) device. The advancement of electroactive MNs electrically assisted in the capture of biomarkers or the triggering of drug release. Recent works have combined conducting polymers (CPs) onto MNs owing to the soft nature of the polymers and their tunable ionic and electronic conductivity.
View Article and Find Full Text PDFSkin sampling is a diagnostic procedure based on the analysis of extracted skin tissues and/or the observation of biomarkers in bodily fluids. Sampling using microneedles (MNs) that minimize invasiveness is gaining attention over conventional biopsy/blood lancet. In this study, new MNs for electrochemically assisted skin sampling are reported, specifically tailored for combined skin tissue biopsy and interstitial fluid (ISF) extraction.
View Article and Find Full Text PDFBackground: Electrospun fibers are widely studied in regenerative medicine for their ability to mimic the extracellular matrix (ECM) and provide mechanical support. In vitro studies indicated that cell adhesion and migration is superior on smooth poly(L-lactic acid) (PLLA) electrospun scaffolds and porous scaffolds once biofunctionalized with collagen.
Methods: The in vivo performance of PLLA scaffolds with modified topology and collagen biofunctionalization in full-thickness mouse wounds was assessed by cellular infiltration, wound closure and re-epithelialization and ECM deposition.
Over the past two decades significant technical advancement in the field of western blotting has been made possible through the utilization of microfluidic technologies. In this review we provide a critical overview of these advancements, highlighting the advantages and disadvantages of each approach. Particular attention is paid to the development of now commercially available systems, including those for single cell analysis.
View Article and Find Full Text PDFFundamental knowledge about cell-surface interactions can be applied in the development of wound dressings and scaffolds to encourage wounds to heal. As surfaces produced with acid-functionalised monomers encourage keratinocyte adhesion, proliferation and migration, whilst amine functionalisation enhances fibroblast proliferation and migration in vitro, standard care wound dressings were plasma-coated with either acrylic acid or allylamine and applied to 6 mm excisional wounds on the backs of mice to test their effectiveness in vivo. At day 3, the rate of wound healing was increased in mice treated with dressings that were plasma-coated with allylamine compared to uncoated dressings, with a significantly reduced wound area.
View Article and Find Full Text PDF