Publications by authors named "X J Zeng"

Despite numerous studies of water structures at the two-dimensional water-solid interfaces, much less is known about the phase behaviors of water at the one-dimensional (1D) liquid-solid interface. In this work, the 1D interfacial water phase behavior on the outer surface of carbon nanotube-like (CNT-like) models is studied by tuning the Lennard-Jones potential parameter ε of the surface atoms at various temperatures. Extensive molecular dynamics simulations show that ice nanotubes (INTs) can be spontaneously formed on CNT-like model surfaces without nanoconfinement.

View Article and Find Full Text PDF

A Fe-catalyzed hydrocyclization reaction of unactivated alkenes was developed, utilizing PhSiH as the hydrogen source, yielding 2,3-dihydroquinazolinone (DHQZ) derivatives in moderate to good yields. Notably, when the substrate was switched to -cyano--(2-(prop-1-en-2-yl)phenyl)benzamides, the reaction yielded only the unreduced products. Mechanistic studies revealed that the intramolecular addition of the in situ formed radical to the unactivated alkene results in the formation of the fused ring.

View Article and Find Full Text PDF

Mitochondria are important organelles that regulate cellular energy and biosynthesis, as well as maintain the body's response to environmental stress. Their dynamics and autophagy influence occurrence of cellular function, particularly under stressful conditions. They can generate reactive oxygen species (ROS) which is a major contributor to inflammatory diseases such as ulcerative colitis (UC).

View Article and Find Full Text PDF

Oral cancer is a highly malignant disease characterized by recurrence, metastasis, and poor prognosis. Autophagy, a catabolic process induced under stress conditions, has been shown to play a dual role in oral cancer development and therapy. Recent studies have identified that autophagy activation in oral epithelial cells suppresses cancer cell survival by inhibiting key pathways such as the mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK), while activating the adenosine monophosphate-activated protein kinase (AMPK) pathway.

View Article and Find Full Text PDF

Background: The limitation in spatial resolution of bone scintigraphy, combined with the vast variations in size, location, and intensity of bone metastasis (BM) lesions, poses challenges for accurate diagnosis by human experts. Deep learning-based analysis has emerged as a preferred approach for automating the identification and delineation of BM lesions. This study aims to develop a deep learning-based approach to automatically segment bone scintigrams for improving diagnostic accuracy.

View Article and Find Full Text PDF