Interleukin-17A (IL-17A), a pro-inflammatory cytokine acting on neutrophil recruitment, is known to play an important role during Mycobacterium tuberculosis infection, but the role of IL-17A receptor signalling in immune defence against this intracellular pathogen remains poorly documented. Here we have analysed this signalling using C57BL/6 mice genetically inactivated in the IL-17 receptor A subunit (IL-17RA(-/-) ). Although early after infection bacterial growth was controlled to the same extent as in wild-type mice, IL-17RA(-/-) mice were defective in exerting long-term control of M.
View Article and Find Full Text PDFWe have analyzed the importance of proteases for the induction of allergic responses against the mold Alternaria alternata. Responses induced in vivo with untreated or heat treated (protease inactivated) extracts were compared in BALB/c, C57BL/6, TLR4 KO, and MyD88 KO mice. In BALB/c mice, both extracts induced similar lung inflammation, upregulation of inflammatory mediators, Th2 cytokines, and Alternaria-specific antibodies.
View Article and Find Full Text PDFOn the basis of transfection experiments using a dominant-negative approach, our previous studies suggested that PKB (protein kinase B) was not involved in heart PFK-2 (6-phosphofructo2-kinase) activation by insulin. Therefore we first tested whether SGK3 (serum- and glucocorticoid-induced protein kinase 3) might be involved in this effect. Treatment of recombinant heart PFK-2 with [γ-32P]ATP and SGK3 in vitro led to PFK-2 activation and phosphorylation at Ser466 and Ser483.
View Article and Find Full Text PDFUltrasound-targeted microbubble destruction (UTMD) can cause left ventricular (LV) dysfunction and tissue alterations in rats when high ultrasound (US) energy and long duration of imaging are used. However, the mechanism underlying these alterations remains unclear. The aim of the present work was to investigate the possible role of ischemia in the pathogenesis of the UTMD-induced LV damages in rats.
View Article and Find Full Text PDF