Publications by authors named "X Gaeta"

The let-7 family of miRNAs has been shown to be crucial in many aspects of biology, from the regulation of developmental timing to cancer. The available methods to regulate this family of miRNAs have so far been mostly genetic and therefore not easily performed experimentally. Here, we describe a small molecule screen designed to identify regulators of let-7 targets in human cells.

View Article and Find Full Text PDF

The let-7 family of miRNAs have been shown to control developmental timing in organisms from C. elegans to humans; their function in several essential cell processes throughout development is also well conserved. Numerous studies have defined several steps of post-transcriptional regulation of let-7 production; from pri-miRNA through pre-miRNA, to the mature miRNA that targets endogenous mRNAs for degradation or translational inhibition.

View Article and Find Full Text PDF

The rate of glycolytic metabolism changes during differentiation of human embryonic stem cells (hESCs) and reprogramming of somatic cells to pluripotency. However, the functional contribution of glycolytic metabolism to the pluripotent state is unclear. Here we show that naive hESCs exhibit increased glycolytic flux, MYC transcriptional activity, and nuclear N-MYC localization relative to primed hESCs.

View Article and Find Full Text PDF

Using a compendium of cell-state-specific gene expression data, we identified genes that uniquely define cell states, including those thought to represent various developmental stages. Our analysis sheds light on human cell fate through the identification of core genes that are altered over several developmental milestones, and across regional specification. Here we present cell-type specific gene expression data for 17 distinct cell states and demonstrate that these modules of genes can in fact define cell fate.

View Article and Find Full Text PDF

Hypoxia augments human embryonic stem cell (hESC) self-renewal via hypoxia-inducible factor 2α-activated OCT4 transcription. Hypoxia also increases the efficiency of reprogramming differentiated cells to a pluripotent-like state. Combined, these findings suggest that low O2 tension would impair the purposeful differentiation of pluripotent stem cells.

View Article and Find Full Text PDF