Publications by authors named "X G Yu"

Objectives: The link between allergic diseases and deficits in children's neurodevelopment has been suggested, but it remains unclear regarding the allergy-related effects on social-emotional development in early life. Our study aimed to explore the association between allergic diseases and social-emotional development during infancy using a prospective study.

Methods: 937 infants at 6 months were recruited from two community hospitals in Shanghai, of which 805 infants followed up at 12 months.

View Article and Find Full Text PDF

Enterovirus D68 (EV-D68) is a leading non-polio enterovirus that causes severe respiratory diseases and poliomyelitis-like illness in children. Viral entry represents a potential multifaceted target for antiviral intervention; however, there are no approved inhibitors to block EV-D68. Here, we identify the functionally undescribed membrane protein major facilitator superfamily-domain-containing protein 6 (MFSD6) as an EV-D68 entry factor amenable to therapeutic intervention.

View Article and Find Full Text PDF

Ultra-precision point-of-care detection of Escherichia coli O157:H7 in foods is an important issue. Here, the detection sensitivity was improved by a signal cascade amplification strategy synergised by exonuclease III assisted isothermal amplification and reverse magnetic strategy. The double-stranded DNA formed by the aptamer and the target DNA as a sensing switch, avoiding the complex process of specific nucleic acid extraction.

View Article and Find Full Text PDF

Accurately predicting intracerebral hemorrhage (ICH) prognosis is a critical and indispensable step in the clinical management of patients post-ICH. Recently, integrating artificial intelligence, particularly deep learning, has significantly enhanced prediction accuracy and alleviated neurosurgeons from the burden of manual prognosis assessment. However, uni-modal methods have shown suboptimal performance due to the intricate pathophysiology of the ICH.

View Article and Find Full Text PDF

As an accelerated electron transfer device, the influence of microbial electrochemical snorkel (MES) on soil greenhouse gas production remains unclear. Electron transport is the key to methane production and denitrification. We found that the NO amount of the MES treatment was comparable to the control however the cumulative CO and CH emissions were reduced by 50% and 41%, respectively.

View Article and Find Full Text PDF