Pesticide exposure is an important driver of bee declines. Laboratory toxicity tests provide baseline information on the potential effects of pesticides on bees, but current risk assessment schemes rely on one species, the highly social honey bee, Apis mellifera, and there is uncertainty regarding the extent to which this species is a suitable surrogate for other pollinators. For this reason, Osmia cornuta and Osmia bicornis have been proposed as model solitary bee species in the EU risk assessment scheme.
View Article and Find Full Text PDFSoil invertebrates (i.e., soil fauna) are important drivers of many key processes in soils including soil aggregate formation, water retention, and soil organic matter transformation.
View Article and Find Full Text PDFBiochar applications can have important implications for many of the soil functions upon which agroecosystems rely, particularly regarding organic carbon storage. This study evaluated the impacts of adding a highly aromatic gasification biochar at different rates (0, 12 and 50 t ha) to a barley crop on the provision of crucial soil functions (carbon sequestration, water content, greenhouse gas emissions, nutrient cycling, soil food web functioning, and food production). After natural ageing in the field for six years, a wide range of soil properties representative of the studied soil functions were measured and integrated into a soil quality index.
View Article and Find Full Text PDFKnowledge of pesticides fate in tropical soils and how it could be affected by pyrolyzed biomass as amendment is limited. Combining conventional and radiotracer methods, as well as risk assessment tools, the effects of several charred agrowastes on the sorption, persistence, and ecological risk of the herbicides bromacil (BMC) and diuron (DRN) were evaluated in a tropical agricultural soil under laboratory conditions. Pineapple stubble (PS), palm oil fiber (PF), and coffee hull (CH) were charred at 300 (torrefied) and 600 °C (biochar) and applied to the soil at 10 and 20 t ha rates.
View Article and Find Full Text PDFSoil-applied biochar has been reported to possess the potential to mitigate nitrate leaching and thus, exert beneficial effects beyond carbon sequestration. The main objective of the present study is to confirm if a pine gasification biochar that has proven able to decrease soil-soluble nitrate in previous research can indeed exert such an effect and to determine by which mechanism. For this purpose, lysimeters containing soil-biochar mixtures at 0, 12 and 50 t biochar ha were investigated in two different scenarios: a fresh biochar scenario consisting of fresh biochar and a fallow-managed soil, and an aged biochar scenario with a 6-yr naturally aged biochar in a crop-managed soil.
View Article and Find Full Text PDF