Terahertz (THz) emissions from fast electron and ion currents driven in relativistic, femtosecond laser-foil interactions are examined theoretically. We first consider the radiation from the energetic electrons exiting the backside of the target. Our kinetic model takes account of the coherent transition radiation due to these electrons crossing the plasma-vacuum interface as well as of the synchrotron radiation due to their deflection and deceleration in the sheath field they set up in vacuum.
View Article and Find Full Text PDFContemporary ultraintense, short-pulse laser systems provide extremely compact setups for the production of high-flux neutron beams, such as those required for nondestructive probing of dense matter, research on neutron-induced damage in fusion devices or laboratory astrophysics studies. Here, by coupling particle-in-cell and Monte Carlo numerical simulations, we examine possible strategies to optimise neutron sources from ion-induced nuclear reactions using 1-PW, 20-fs-class laser systems. To improve the ion acceleration, the laser-irradiated targets are chosen to be ultrathin solid foils, either standing alone or preceded by a plasma layer of near-critical density to enhance the laser focusing.
View Article and Find Full Text PDFRelativistic interactions between ultraintense (>10^{18} W cm^{-2}) laser pulses and magnetized underdense plasmas are known to produce few-cycle Cerenkov wake radiation in the terahertz (THz) domain. Using multidimensional particle-in-cell simulations, we demonstrate the possibility of generating high-field (>100 GV m^{-1}) THz bursts from helium gas plasmas embedded in strong (>100 T) magnetic fields perpendicular to the laser path. We show that two criteria must be satisfied for efficient THz generation.
View Article and Find Full Text PDFSources of high-energy photons have important applications in almost all areas of research. However, the photon flux and intensity of existing sources is strongly limited for photon energies above a few hundred keV. Here we show that a high-current ultrarelativistic electron beam interacting with multiple submicrometer-thick conducting foils can undergo strong self-focusing accompanied by efficient emission of gamma-ray synchrotron photons.
View Article and Find Full Text PDFPhys Rev Lett
December 2019
Terahertz pulse generation by ultraintense two-color laser fields ionizing gases with near- to far-infrared carrier wavelength is studied from particle-in-cell simulations. For a long pump wavelength (10.6 μm) promoting a large ratio of electron density over critical, photoionization is shown to catastrophically enhance the plasma wakefield, causing a net downshift in the optical spectrum and exciting THz fields with tens of GV/m amplitude in the laser direction.
View Article and Find Full Text PDF