Background: Head and neck squamous cell carcinoma (HNSCC), a highly invasive malignancy with a poor prognosis, is one of the most common cancers globally. Circular RNAs (circRNAs) have become key regulators of human malignancies, but further studies are necessary to fully understand their functions and possible causes in HNSCC.
Methods: CircCCT2 expression levels in HNSCC tissues and cells were measured via qPCR.
The aim of this study is to conduct a comprehensive bibliometric analysis of CT-based adipose tissue imaging related to coronary artery disease (CAD) to investigate the dynamic development of this field. Web of Science Core Collection was used as our data source to identify relevant documents limited to articles or review articles and written in English with no time restrictions. Then we analyzed the whole trend of publications and utilized VOSviewer and Bibliometrix to conduct a bibliometric analysis including citations, keywords, countries, institutions, authors as well as co-citation analyses of cited references and sources.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC.
View Article and Find Full Text PDFCardiovascular diseases (CVDs) continue to be a substantial global healthcare burden despite considerable progress in therapies. The inflammatory response during the progression of CVD has attracted considerable attention. Mitochondria serve as the principal energy source for the heart.
View Article and Find Full Text PDFHigh-entropy spinel (HES) compounds, as a typical class of high-entropy materials (HEMs), represent a novel frontier in the search for next-generation catalysts. Their unique blend of high entropy, compositional diversity, and structural complexity offers unprecedented opportunities to tailor catalyst properties for enhanced performance (, activity, selectivity, and stability) in heterogeneous reactions. However, there is a gap in a critical review of the catalytic applications of HESs, especially focusing on an in-depth discussion of the structure-property-performance relationships.
View Article and Find Full Text PDF