The article comments on claims made by Rêgo et al. about the sensor they developed to determine soil water content and its salinity via the admittance measurement of electrodes embedded in the soil. Their sensor is not based on a self-balanced bridge, as stated, but on a more common technique relying on Ohm's law.
View Article and Find Full Text PDFThe article describes a new field sensor to monitor continuously in situ moisture and salinity of a porous medium via measurements of its dielectric permittivity, conductivity and temperature. It intends to overcome difficulties and biases encountered with sensors based on the same sensitivity principle. Permittivity and conductivity are determined simultaneously by a self-balanced bridge, which measures directly the admittance of sensor electrodes in medium.
View Article and Find Full Text PDFThis paper describes a sensor dedicated to measuring the vertical profile of the complex permittivity and the temperature of any medium in which sensor electrodes are inserted. Potential applications are the estimate of the humidity and salinity in a porous medium, such as a soil. It consists of vertically-stacked capacitors along two conductive parallel cylinders of 5 cm in diameter and at a 10-cm distance to scan a significant volume of the medium (~1 L).
View Article and Find Full Text PDFBy focusing a high-intensity acoustic wave in liquid helium, we have observed the nucleation of solid helium inside the wave above a certain threshold in amplitude. The nucleation is a stochastic phenomenon. Its probability increases continuously from 0 to 1 in a narrow pressure interval around P(m) + 4.
View Article and Find Full Text PDF