Lectin-like molecules play a key role in mammalian sperm functionality. These multifunctional proteins have been proven to be involved in sperm capacitation, sperm motility, and viability, formation of the oviductal sperm reservoir, and in sperm-oocyte interaction. In a previous study, we reported the presence of a novel seminal plasma lectin, sperm lectin 15 kDa (SL15), adsorbed to the llama sperm.
View Article and Find Full Text PDFCamelids' semen has peculiar characteristics that differentiate it from other species, including the highly viscous aspect of seminal plasma that greatly difficult sperm manipulation and the development of techniques such as cryopreservation, artificial insemination, and/or in vitro fertilization. The presence of proteases in the seminal plasma is responsible for semen liquefaction, and sperm functionality to achieve fertilization. The enzymatic and molecular composition of the semen of llama remains unknown.
View Article and Find Full Text PDFSemen cryopreservation in South American camelids has a low efficiency. Post-thaw viability of sperm is low, and poor results are obtained when artificial insemination is performed with cryopreserved semen, impeding advances both in accelerated genetic progress and selection. This study aimed to describe the effect of a conventional method of camelid semen cryopreservation on the llama sperm ultrastructure during cooling and freezing, using transmission and scanning electron microscopy (TEM, SEM).
View Article and Find Full Text PDF