Publications by authors named "X Baillard"

The 1S0-3P0 clock transition frequency nuSr in neutral 87Sr has been measured relative to the Cs standard by three independent laboratories in Boulder, Paris, and Tokyo over the last three years. The agreement on the 1 x 10(-15) level makes nuSr the best agreed-upon optical atomic frequency. We combine periodic variations in the 87Sr clock frequency with 199Hg+ and H-maser data to test local position invariance by obtaining the strongest limits to date on gravitational-coupling coefficients for the fine-structure constant alpha, electron-proton mass ratio mu, and light quark mass.

View Article and Find Full Text PDF

We report what we believe to be the first accuracy evaluation of an optical lattice clock based on the S01-->P03 transition of an alkaline earth boson, namely, Sr88 atoms. This transition has been enabled by using a static coupling magnetic field. The clock frequency is determined to be 429228066418009(32)Hz.

View Article and Find Full Text PDF

We report a frequency measurement of the 1S0-3P0 transition of 87Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879(5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. The two previous measurements of this transition were found to disagree by about 2 x 10(-13), i.

View Article and Find Full Text PDF

We report the observation of a higher-order frequency shift due to the trapping field in a (87)Sr optical lattice clock. We show that, at the magic wavelength of the lattice, where the first-order term cancels, the higher-order shift will not constitute a limitation to the fractional accuracy of the clock at a level of 10(-18). This result is achieved by operating the clock at very high trapping intensity up to 400 kW/cm(2) and by a specific study of the effect of the two two-photon transitions near the magic wavelength.

View Article and Find Full Text PDF