Global warming is exposing many organisms to severe thermal conditions and is having impacts at multiple levels of biological organisation, from individuals to species and beyond. Biotic and abiotic factors can influence organismal thermal tolerance, shaping responses to climate change. In eusocial ants, thermal tolerance can be measured at the colony level (among workers within colonies), the population level (among colonies within species), and the community level (among species).
View Article and Find Full Text PDFTo understand how food resource use and partitioning by closely related species allows local coexistence, it is key to determine whether a species' diet reflects food availability or food preferences. Here, we analysed the diets, seed selection, and seed preferences of three closely related harvester ants: Messor barbarus, M. bouvieri, and M.
View Article and Find Full Text PDFPesticide exposure is an important driver of bee declines. Laboratory toxicity tests provide baseline information on the potential effects of pesticides on bees, but current risk assessment schemes rely on one species, the highly social honey bee, Apis mellifera, and there is uncertainty regarding the extent to which this species is a suitable surrogate for other pollinators. For this reason, Osmia cornuta and Osmia bicornis have been proposed as model solitary bee species in the EU risk assessment scheme.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
August 2022
Critical thermal limits (CTLs) constrain the performance of organisms, shaping their abundance, current distributions, and future distributions. Consequently, CTLs may also determine the quality of ecosystem services as well as organismal and ecosystem vulnerability to climate change. As some of the most ubiquitous animals in terrestrial ecosystems, ants are important members of ecological communities.
View Article and Find Full Text PDF