Publications by authors named "Wytze K Lenstra"

Article Synopsis
  • * The study examined how backwashing impacts the microbial community and chemical composition in a dual-media filter of anthracite and sand while tracking the removal efficiency of Fe, Mn, and NH over time.
  • * Results showed that backwashing improved Fe removal efficiency and led to a mixed microbial community across the filter layers, with specific microorganisms playing key roles in oxidation and nitrification processes.
View Article and Find Full Text PDF

Coastal zones account for 75% of marine methane emissions, despite covering only 15% of the ocean surface area. In these ecosystems, the tight balance between methane production and oxidation in sediments prevents most methane from escaping into seawater. However, anthropogenic activities could disrupt this balance, leading to an increased methane escape from coastal sediments.

View Article and Find Full Text PDF

Coastal environments are a major source of marine methane in the atmosphere. Eutrophication and deoxygenation have the potential to amplify the coastal methane emissions. Here, we investigate methane dynamics in the eutrophic Stockholm Archipelago.

View Article and Find Full Text PDF

In coastal waters, methane-oxidizing bacteria (MOB) can form a methane biofilter and mitigate methane emissions. The metabolism of these MOBs is versatile, and the resilience to changing oxygen concentrations is potentially high. It is still unclear how seasonal changes in oxygen availability and water column chemistry affect the functioning of the methane biofilter and MOB community composition.

View Article and Find Full Text PDF

Anthropogenic activities are influencing aquatic environments through increased chemical pollution and thus are greatly affecting the biogeochemical cycling of elements. This has increased greenhouse gas emissions, particularly methane, from lakes, wetlands, and canals. Most of the methane produced in anoxic sediments is converted into carbon dioxide by methanotrophs before it reaches the atmosphere.

View Article and Find Full Text PDF

Methane is a powerful greenhouse gas that is produced in large quantities in marine sediments. Microbially mediated oxidation of methane in sediments, when in balance with methane production, prevents the release of methane to the overlying water. Here, we present a gene-based reactive transport model that includes both microbial and geochemical dynamics and use it to investigate whether the rate of growth of methane oxidizers in sediments impacts the efficiency of the microbial methane filter.

View Article and Find Full Text PDF

Rapid sand filtration is a common method for removal of iron (Fe), manganese (Mn) and ammonium (NH) from anoxic groundwaters used for drinking water production. In this study, we combine geochemical and microbiological data to assess how filter age influences Fe, Mn and NH removal in dual media filters, consisting of anthracite overlying quartz sand, that have been in operation for between ∼2 months and ∼11 years. We show that the depth where dissolved Fe and Mn removal occurs is reflected in the filter medium coatings, with ferrihydrite forming in the anthracite in the top of the filters (< 1 m), while birnessite-type Mn oxides are mostly formed in the sand (> 1 m).

View Article and Find Full Text PDF

The potential and drivers of microbial methane removal in the water column of seasonally stratified coastal ecosystems and the importance of the methanotrophic community composition for ecosystem functioning are not well explored. Here, we combined depth profiles of oxygen and methane with 16S rRNA gene amplicon sequencing, metagenomics and methane oxidation rates at discrete depths in a stratified coastal marine system (Lake Grevelingen, The Netherlands). Three amplicon sequence variants (ASVs) belonging to different genera of aerobic Methylomonadaceae and the corresponding three methanotrophic metagenome-assembled genomes (MOB-MAGs) were retrieved by 16S rRNA sequencing and metagenomic analysis, respectively.

View Article and Find Full Text PDF

Enhanced recycling of phosphorus as ocean deoxygenation expanded under past greenhouse climates contributed to widespread organic carbon burial and drawdown of atmospheric CO. Redox-dependent phosphorus recycling was more efficient in such ancient anoxic marine environments, compared to modern anoxic settings, for reasons that remain unclear. Here, we show that low rates of apatite authigenesis in organic-rich sediments can explain the amplified phosphorus recycling in ancient settings as reflected in highly elevated ratios of organic carbon to total phosphorus.

View Article and Find Full Text PDF

Coastal waters worldwide suffer from increased eutrophication and seasonal bottom water hypoxia. Here, we assess the dynamics of iron (Fe), manganese (Mn), and phosphorus (P) in sediments of the eutrophic, brackish Gulf of Finland populated by cable bacteria. At sites where bottom waters are oxic in spring, surface enrichments of Fe and Mn oxides and high abundances of cable bacteria were observed in sediments upon sampling in early summer.

View Article and Find Full Text PDF

Microbial methane oxidation is a major biofilter preventing larger emissions of this powerful greenhouse gas from marine coastal areas into the atmosphere. In these zones, various electron acceptors such as sulfate, metal oxides, nitrate, or oxygen can be used. However, the key microbial players and mechanisms of methane oxidation are poorly understood.

View Article and Find Full Text PDF

Sorption of nutrients such as phosphate (P) and silicate (Si) by ferric iron (oxyhydr)oxides (FeOx) modulates nutrient mobility and alters the structure and reactivity of the FeOx. We investigated the impact of these interactions on FeOx transformations using a novel approach with samplers containing synthetic FeOx embedded in diffusive hydrogels. The FeOx were prepared by Fe(III) hydrolysis and Fe(II) oxidation, in the absence and presence of P or Si.

View Article and Find Full Text PDF

Oxygen depletion in coastal waters may lead to release of toxic sulfide from sediments. Cable bacteria can limit sulfide release by promoting iron oxide formation in sediments. Currently, it is unknown how widespread this phenomenon is.

View Article and Find Full Text PDF