Publications by authors named "Wysocki V"

The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.

View Article and Find Full Text PDF

Histone H3K9 methylation (H3K9me) by Setdb1 silences retrotransposons (rTE) by sequestering them in constitutive heterochromatin. Atf7IP is a constitutive binding partner of Setdb1 and is responsible for Setdb1 nuclear localization, activation and chromatin recruitment. However, structural details of the Setdb1/Atf7IP interaction have not been evaluated.

View Article and Find Full Text PDF

Unlabelled: The ability to treat infections is threatened by the rapid emergence of antibiotic resistance among pathogenic microbes. Therefore, new antimicrobials are needed. Here we evaluate mannitol-1-phosphate 5-dehydrogenase (MtlD) as a potential new drug target.

View Article and Find Full Text PDF

Pseudosymmetric hetero-oligomers with three or more unique subunits with overall structural (but not sequence) symmetry play key roles in biology, and systematic approaches for generating such proteins de novo would provide new routes to controlling cell signaling and designing complex protein materials. However, the de novo design of protein hetero-oligomers with three or more distinct chains with nearly identical structures is a challenging unsolved problem because it requires the accurate design of multiple protein-protein interfaces simultaneously. Here, we describe a divide-and-conquer approach that breaks the multiple-interface design challenge into a set of more tractable symmetric single-interface redesign tasks, followed by structural recombination of the validated homo-oligomers into pseudosymmetric hetero-oligomers.

View Article and Find Full Text PDF

After overexpression in a suitable host, recombinant protein purification often relies on affinity (e.g., poly-histidine) and solubility-enhancing (e.

View Article and Find Full Text PDF
Article Synopsis
  • Native mass spectrometry characterizes biomolecular features, but ionization tuning can distort the protein complex's structure, affecting experimental results.
  • Surface-induced dissociation (SID) helps determine the native-like topology of protein complexes by causing them to dissociate at their weakest interfaces, but precedes changes in the quaternary structure can alter SID results.
  • Electron-capture dissociation (ECD) complements SID by confirming rearranged subunit interfaces after in-source activation, emphasizing the importance of using standard protein complexes when calibrating instruments for accurate native mass spectrometry.
View Article and Find Full Text PDF

Leveraging the rich structural information provided by AlphaFold, we used integrated experimental approaches to characterize the HerA-DUF4297 (DUF) anti-phage defense system, in which DUF is of unknown function. To infer the function of DUF, we performed structure-guided genomic analysis and found that DUF homologs are universally present in bacterial immune defense systems. One notable homolog of DUF is Cap4, a universal effector with nuclease activity in CBASS, the most prevalent anti-phage system in bacteria.

View Article and Find Full Text PDF

Salmonella enterica serovar Typhimurium is a pervasive enteric pathogen and ongoing global threat to public health. Ecological studies in the Salmonella impacted gut remain underrepresented in the literature, discounting microbiome mediated interactions that may inform Salmonella physiology during colonization and infection. To understand the microbial ecology of Salmonella remodeling of the gut microbiome, we performed multi-omics on fecal microbial communities from untreated and Salmonella-infected mice.

View Article and Find Full Text PDF

infection, also known as , is one of the most common food-borne illnesses. infection can trigger host defensive functions, including an inflammatory response. The provoked-host inflammatory response has a significant impact on the bacterial population in the gut.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the bacteria serovar Typhimurium reacts to different diets (fibrous vs. high-fat) over time in mice, focusing on its metabolic responses and implications for antibiotic resistance.
  • Findings indicate that mice on a high-fat diet showed increased inflammation, affecting gene expression related to respiration and infection phases (early, peak, late), highlighting the bacteria's adaptability.
  • The research suggests that understanding these dietary influences on serovar Typhimurium could lead to new therapeutic strategies to combat infections, especially amid rising antibiotic resistance.
View Article and Find Full Text PDF

We illustrate the utility of native mass spectrometry (nMS) combined with a fast, tunable gas-phase charge reduction, electron capture charge reduction (ECCR), for the characterization of protein complex topology and glycoprotein heterogeneity. ECCR efficiently reduces the charge states of tetradecameric GroEL, illustrating Orbitrap / measurements to greater than 100,000 /. For pentameric C-reactive protein and tetradecameric GroEL, our novel device combining ECCR with surface induced dissociation (SID) reduces the charge states and yields more topologically informative fragmentation.

View Article and Find Full Text PDF

Native proteomics measures endogenous proteoforms and protein complexes under a near physiological condition using native mass spectrometry (nMS) coupled with liquid-phase separations. Native proteomics should provide the most accurate bird's-eye view of proteome dynamics within cells, which is fundamental for understanding almost all biological processes. nMS has been widely employed to characterize well-purified protein complexes.

View Article and Find Full Text PDF

Cellular production of tryptophan is metabolically expensive and tightly regulated. The small zinc binding Anti-TRAP protein (AT), which is the product of the gene, is upregulated in response to accumulating levels of uncharged tRNA through a T-box antitermination mechanism. AT binds to the undecameric axially symmetric ring-shaped protein TRAP ( RNA Binding Attenuation Protein), thereby preventing it from binding to the leader RNA.

View Article and Find Full Text PDF

Mass-spectrometry based assays in structural biology studies measure either intact or digested proteins. Typically, different mass spectrometers are dedicated for such measurements: those optimized for rapid analysis of peptides or those designed for high molecular weight analysis. A commercial trapped ion mobility-quadrupole-time-of-flight (TIMS-Q-TOF) platform is widely utilized for proteomics and metabolomics, with ion mobility providing a separation dimension in addition to liquid chromatography.

View Article and Find Full Text PDF

We report the first mass photometric characterization of nanoaggregates of atomically precise nanoclusters (NCs) in solution. The differently-sized nanoaggregates of silver-gold alloy NCs, [AgAu(DPPB)ClO] [ = 1-5 and DPPB = 1,4-bis(diphenylphosphino)butane], formed in solution, were examined by mass photometry (MP) with a protein calibration. In addition, we conducted MP studies of varying solvent composition to understand the structural evolution of nanoaggregates.

View Article and Find Full Text PDF

Homotropic cooperativity is widespread in biological regulation. The homo-oligomeric ring-shaped RNA binding attenuation protein (TRAP) from bacillus binds multiple tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA. Ligand-activated binding to this specific RNA sequence regulates downstream biosynthesis of Trp in a feedback loop.

View Article and Find Full Text PDF

Native proteomics measures endogenous proteoforms and protein complexes under a near physiological condition using native mass spectrometry (nMS) coupled with liquid-phase separations. Native proteomics should provide the most accurate bird's-eye view of proteome dynamics within cells, which is fundamental for understanding almost all biological processes. nMS has been widely employed to characterize well-purified protein complexes.

View Article and Find Full Text PDF

Redβ is a protein from bacteriophage λ that binds to single-stranded DNA (ssDNA) to promote the annealing of complementary strands. Together with λ-exonuclease (λ-exo), Redβ is part of a two-component DNA recombination system involved in multiple aspects of genome maintenance. The proteins have been exploited in powerful methods for bacterial genome engineering in which Redβ can anneal an electroporated oligonucleotide to a complementary target site at the lagging strand of a replication fork.

View Article and Find Full Text PDF

Obesity is a global health crisis that contributes to morbidity and mortality worldwide. Obesity's comorbid association with a variety of diseases, from metabolic syndrome to neurodegenerative disease, underscores the critical need to better understand the pathobiology of obesity. Adipose tissue, once seen as an inert storage depot, is now recognized as an active endocrine organ, regulating metabolic and systemic homeostasis.

View Article and Find Full Text PDF

As one of the most prevalent anti-phage defense systems in prokaryotes, Gabija consists of a Gabija protein A (GajA) and a Gabija protein B (GajB). The assembly and function of the Gabija system remain unclear. Here we present cryo-EM structures of Bacillus cereus GajA and GajAB complex, revealing tetrameric and octameric assemblies, respectively.

View Article and Find Full Text PDF

Capillary electrophoresis (CE) interfaced to mass spectrometry (MS) with electrospray ionization typically incorporates acidic additives or organic solvents to assist in ionization. Vibrating sharp-edge spray ionization (VSSI) is a voltage-free method to interface CE and MS that does not require these additives, making it appealing for protein analyses. CE-VSSI nanoflow sheath separations are performed with low ionic strength aqueous solutions in the sheath to reduce suppression.

View Article and Find Full Text PDF

We illustrate the utility of native mass spectrometry (nMS) combined with a fast, tunable gas-phase charge reduction, electron capture charge reduction (ECCR), for the characterization of protein complex topology and glycoprotein heterogeneity. ECCR efficiently reduces the charge states of tetradecameric GroEL, illustrating Orbitrap measurements to greater than 100,000 . For pentameric C-reactive protein and tetradecameric GroEL, our novel device combining ECCR with surface induced dissociation (SID) reduces the charge states and yields more topologically informative fragmentation.

View Article and Find Full Text PDF