The contribution of progenitor subtypes to generate the billions of neurons during human cortical neurogenesis is not well understood. We developed the Cortical ORganoid Lineage Tracing (COR-LT) system for human cortical organoids. Differential fluorescent reporter activation in distinct progenitor cells leads to permanent reporter expression, enabling the progenitor cell lineage of neurons to be determined.
View Article and Find Full Text PDFAlterations in cortical neurogenesis are implicated in neurodevelopmental disorders including autism spectrum disorders (ASDs). The contribution of genetic backgrounds, in addition to ASD risk genes, on cortical neurogenesis remains understudied. Here, using isogenic induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) and cortical organoid models, we report that a heterozygous PTEN c.
View Article and Find Full Text PDFAutism spectrum disorders (ASD) display both phenotypic and genetic heterogeneity, impeding the understanding of ASD and development of effective means of diagnosis and potential treatments. Genes affected by genomic variations for ASD converge in dozens of gene ontologies (GOs), but the relationship between the variations at the GO level have not been well elucidated. In the current study, multiple types of genomic variations were mapped to GOs and correlations among GOs were measured in ASD and control samples.
View Article and Find Full Text PDFProtein-tyrosine phosphatases (PTPs) are pleomorphic regulators of eukaryotic cellular responses to extracellular signals that function by modulating the phosphotyrosine of specific proteins. A handful of PTPs have been implicated in germline and somatic human disease. Using exome sequencing, we identified missense and truncating variants in in six unrelated individuals with varying degrees of intellectual disability or developmental delay.
View Article and Find Full Text PDFAttention deficit hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder with poorly understood pathophysiology and genetic mechanisms. A balanced chromosomal translocation interrupts in several members of a family with profound attentional deficit and myopia, and disruption of the gene was found in a separate unrelated individual with ADHD and myopia. encodes a brain-specific member of the adherens junction complex essential for postsynaptic and dendritic development, a site of potential pathophysiology in attentional disorders.
View Article and Find Full Text PDFAm J Hum Genet
March 2021
This article is based on the address given by the author at the 2020 virtual meeting of the American Society of Human Genetics (ASHG) on October 26, 2020. The video of the original address can be found at the ASHG website.
View Article and Find Full Text PDFPPARγ deficiency in humans and model organisms impairs the transcriptional control of adipogenesis and mature adipocyte function resulting in lipodystrophy and insulin resistance. Zinc finger protein 407 (ZFP407) positively regulates PPARγ target gene expression and insulin-stimulated glucose uptake in cultured adipocytes. The in vivo physiological role of ZFP407 in mature adipocytes, however, remains to be elucidated.
View Article and Find Full Text PDFSubstantial evidence implicates crosstalk between metabolic tissues and the immune system in the inception and progression of obesity. However, molecular regulators that orchestrate metaflammation both centrally and peripherally remains incompletely understood. Here, we identify myeloid Krüppel-like factor 2 (KLF2) as an essential regulator of obesity and its sequelae.
View Article and Find Full Text PDFThe Dishevelled proteins transduce both canonical Wnt/β-catenin and non-canonical Wnt/planar cell polarity (PCP) signaling pathways to regulate many key developmental processes during embryogenesis. Here, we disrupt both canonical and non-canonical Wnt pathways by targeting the entire Dishevelled family of genes (Dvl1, Dvl2, and Dvl3) to investigate their functional roles in the early embryo. We identified several defects in anterior-posterior axis specification and mesoderm patterning in Dvl1; Dvl2; Dvl3 embryos.
View Article and Find Full Text PDFHeterozygous loss of human (coding for LIS1) results in the disruption of neurogenesis and neuronal migration via dysregulation of microtubule (MT) stability and dynein motor function/localization that alters mitotic spindle orientation, chromosomal segregation, and nuclear migration. Recently, human- induced pluripotent stem cell (iPSC) models revealed an important role for LIS1 in controlling the length of terminal cell divisions of outer radial glial (oRG) progenitors, suggesting cellular functions of LIS1 in regulating neural progenitor cell (NPC) daughter cell separation. Here, we examined the late mitotic stages NPCs in vivo and mouse embryonic fibroblasts (MEFs) in vitro from -deficient mutants.
View Article and Find Full Text PDFThe field of genome editing was founded on the establishment of methods, such as the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR/Cas) system, used to target DNA double-strand breaks (DSBs). However, the efficiency of genome editing also largely depends on the endogenous cellular repair machinery. Here, we report that the specific modulation of targeting vectors to provide 3' overhangs at both ends increased the efficiency of homology-directed repair (HDR) in embryonic stem cells.
View Article and Find Full Text PDFAlthough individuals of Amish descent with propionic acidemia (PA) are generally thought to have a milder disease phenotype, we now have a better understanding of the natural history of PA in this population. Here we describe two Amish patients with emergent presentations of PA, one with metabolic decompensation and another with cardiogenic shock. PA can present with life-threatening metabolic decompensation or an adult-onset severe cardiomyopathy.
View Article and Find Full Text PDFIdentification of human disease signature genes typically requires samples from many donors to achieve statistical significance. Here, we show that single-cell heterogeneity analysis may overcome this hurdle by significantly improving the test sensitivity. We analyzed the transcriptome of 39,905 single islets cells from 9 donors and observed distinct β cell heterogeneity trajectories associated with obesity or type 2 diabetes (T2D).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2018
Nonischemic cardiomyopathy (NICM) resulting from long-standing hypertension, valvular disease, and genetic mutations is a major cause of heart failure worldwide. Recent observations suggest that myeloid cells can impact cardiac function, but the role of tissue-intrinsic vs. tissue-extrinsic myeloid cells in NICM remains poorly understood.
View Article and Find Full Text PDFBackground: Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages.
View Article and Find Full Text PDFThe integrated stress response (ISR) is a homeostatic mechanism induced by endoplasmic reticulum (ER) stress. In acute/transient ER stress, decreased global protein synthesis and increased uORF mRNA translation are followed by normalization of protein synthesis. Here, we report a dramatically different response during chronic ER stress.
View Article and Find Full Text PDFNeuropsychopharmacology
January 2018
Stem Cells Transl Med
December 2017
The major neuropsychiatric conditions of schizophrenia, affective disorders, and infantile autism are characterized by chronic symptoms of episodic, stable, or progressive nature that result in significant morbidity. Symptomatic treatments are the mainstay but do not resolve the underlying disease processes, which are themselves poorly understood. The prototype psychotropic drugs are of variable efficacy, with therapeutic mechanisms of action that are still uncertain.
View Article and Find Full Text PDFA defined set of genetic instructions encodes functionality in complex organisms. Delineating these unique genetic signatures is essential to understanding the formation and functionality of specialized tissues. Vision, one of the five central senses of perception, is initiated by the retina and has evolved over time to produce rod and cone photoreceptors that vary in a species-specific manner, and in some cases by geographical region resulting in higher order visual acuity in humans.
View Article and Find Full Text PDFClassical lissencephaly is a genetic neurological disorder associated with mental retardation and intractable epilepsy, and Miller-Dieker syndrome (MDS) is the most severe form of the disease. In this study, to investigate the effects of MDS on human progenitor subtypes that control neuronal output and influence brain topology, we analyzed cerebral organoids derived from control and MDS-induced pluripotent stem cells (iPSCs) using time-lapse imaging, immunostaining, and single-cell RNA sequencing. We saw a cell migration defect that was rescued when we corrected the MDS causative chromosomal deletion and severe apoptosis of the founder neuroepithelial stem cells, accompanied by increased horizontal cell divisions.
View Article and Find Full Text PDFApproximately 1 in 500 newborns are born with chromosomal abnormalities that include trisomies, translocations, large deletions, and duplications. There is currently no therapeutic approach for correcting such chromosomal aberrations in vivo or in vitro. When we attempted to produce induced pluripotent stem cell (iPSC) models from patient-derived fibroblasts that contained ring chromosomes, we found that the ring chromosomes were eliminated and replaced by duplicated normal copies of chromosomes through a mechanism of uniparental isodisomy (Bershteyn et al.
View Article and Find Full Text PDFAm J Med Genet C Semin Med Genet
December 2016
Large chromosomal aberrations occur commonly during development, resulting in complex and multisystem diseases. In spite of this high frequency, there are currently no means for correcting these disorders due to their complexity and involvement of multiple genes. Recently, several new approaches have been devised that target whole chromosomes in vitro, which are collectively referred to as "Chromosome Therapies.
View Article and Find Full Text PDF