Publications by authors named "Wynn-Thompson T"

The hydrologic benefits of catchment-scale implementation of stormwater control measures (SCMs) in mitigating the adverse effects of urbanization are well established. Nevertheless, recent studies indicate that the Unified Stormwater Sizing Criteria (USSC) regulations, mandating the combined use of distributed and storage stormwater controls, do not protect channel stability, despite their effectiveness in reducing runoff from impervious surfaces. The USSC are the basis of SCM design in 11 U.

View Article and Find Full Text PDF

Due to the recent improved availability of global and regional climate change (CC) models and associated data, the projected impact of CC on urban stormwater management is well documented. However, most studies are based on simplified design storm analysis and unit-area runoff models; evaluations of the long-term, continuous hydrologic response of extensive stormwater control measures (SCM) implementation under future CC scenarios are limited. Moreover, channel stability in response to CC is seldom evaluated due to the input data required to develop a long-term, continuous sediment transport model.

View Article and Find Full Text PDF

A detailed understanding of the factors that impact bank erodibility is necessary to effectively model changes in channel form. This study evaluated the combined contributions of roots and soil microorganisms to soil resistance against fluvial erosion. To do this, three flume walls were constructed to simulate unvegetated and rooted streambanks.

View Article and Find Full Text PDF

Thermally enriched runoff from urban impervious surfaces can be harmful to aquatic life; however, only limited information is available on how to mitigate these impacts at the watershed-scale. This study evaluates the effects of retrofitting an urban watershed with thermal mitigation practices (TMPs) relative to thermal toxicity thresholds for aquatic species. The Minnesota Urban Heat Export Tool (MINUHET) and Storm Water Management Model (SWMM) models were used to evaluate TMPs that help reduce temperature and total heat loads (THL) from the Stroubles Creek watershed in Blacksburg, Virginia.

View Article and Find Full Text PDF

Urban development increases runoff temperatures from buildings and pavement, which can be harmful to aquatic life. However, our ability to predict runoff temperature as a function of land use is limited. This paper explores available tools for simulating runoff temperature with respect to brook trout (Salvelinus sp.

View Article and Find Full Text PDF

Bioretention cells (BRCs) are effective tools for treating urban stormwater, but nitrogen removal by these systems is highly variable. Improvements in nitrogen removal are hampered by a lack of data directly quantifying the abundance or activity of denitrifying microorganisms in BRCs and how they are controlled by original BRC design characteristics. We analyzed denitrifiers in twenty-three BRCs of different designs across three mid-Atlantic states (MD, VA, and NC) by quantifying two bacterial denitrification genes ( nirK and nosZ) and potential enzymatic denitrification rates within the soil medium.

View Article and Find Full Text PDF

The remediation of mine water to preserve receiving water quality has advanced substantially over the past half century, but prospective regulations to limit the conductivity of mining-impacted waters pose a significant new challenge. Conventional approaches to reduce high levels of conductivity in these mine waters are often costly, requiring high levels of maintenance and significant inputs of energy and refined chemicals. In contrast, passive biological treatment (PBT) systems are a relatively low-cost, low-maintenance treatment technology for mine waters that have been used for over three decades.

View Article and Find Full Text PDF

It has been proposed that plant biodiversity may increase the erosion resistance of soils, yet direct evidence for any such relationship is lacking. We conducted a mesocosm experiment with eight species of riparian herbaceous plants, and found evidence that plant biodiversity significantly reduced fluvial erosion rates, with the eight-species polyculture decreasing erosion by 23% relative to monocultures. Species richness effects were largest at low levels of species richness, with little increase between four and eight species.

View Article and Find Full Text PDF

We studied stormwater detention basins where woody vegetation removal was suspended for 2 years in Virginia, USA to determine if woody vegetation can control Typha populations and how early woody plant succession interacts with Typha, other herbaceous vegetation, and site factors. Distribution and composition of woody vegetation, Typha and non-Typha herbaceous vegetation biomass, and site factors were assessed at 100 plots in four basins ranging in age from 7 to 17 years. A greenhouse study examined the interaction of shade and soil moisture on Typha biomass and persistence.

View Article and Find Full Text PDF