Computationally modeling the behavior of wavelength-sized non-spherical particles in optical tweezers can give insight into the existence and stability of trapping equilibria as well as the optical manipulation of such particles more broadly. Here, we report Brownian dynamics simulations of non-spherical particles that account for detailed optical, hydrodynamic, and thermal interactions. We use a T-matrix formalism to calculate the optical forces and torques exerted by focused laser beams on clusters of wavelength-sized spheres, and we incorporate detailed diffusion tensors that capture the anisotropic Brownian motion of the clusters.
View Article and Find Full Text PDF