Publications by authors named "Wyatt E Tenhaeff"

High refractive index polymers are essential in next-generation flexible optical and optoelectronic devices. This paper describes a simple synthetic method to prepare polymeric optical coatings possessing high refractive indexes. Poly(4-vinylpyridine) (P4VP) thin films prepared using initiated chemical vapor deposition are exposed to highly polarizable halogen molecules to form stable charge-transfer complexes: P4VP-IX (X = I, Br, and Cl).

View Article and Find Full Text PDF

The fabrication of porous polymer thin films with precise thickness and morphological control through conventional solvent-based techniques is challenging. Herein, we present a fabrication method for porous polymer thin films based on chemical vapor deposition that provides control over pore size, pore morphology, and film thickness. The porous films are prepared by co-depositing crystallizable porogen molecules with cross-linked poly(glycidyl methacrylate) (pGMA) thin films, which are synthesized by initiated chemical vapor deposition (iCVD).

View Article and Find Full Text PDF

Nonuniform electrodeposition and dendritic growth of lithium metal coupled to its chemical incompatibility with liquid electrolytes are largely responsible for poor Coulombic efficiency and safety hazards preventing the successful implementation of energy-dense Li metal anodes. Artificial solid electrolyte interface (ASEI) layers have been proposed to address the morphological evolution and chemical reactions in Li metal anodes. In this study, an ASEI layer consisting of a lithium phosphorus oxynitride (LiPON) thin film electrolyte and gold-alloying interlayer was developed and shown to promote the electrodeposition of smooth, homogeneous, mirror-like Li metal morphologies.

View Article and Find Full Text PDF

Mechanically and thermally robust separators offer an alternative approach for preventing battery failure under extreme conditions such as high loads and temperatures. However, the trade-off between electrochemical performance and mechanical and thermal stability remains an ongoing challenge. Here, we investigate aramid nanofiber (ANF) separators that possess high moduli and self-extinguishing characteristics.

View Article and Find Full Text PDF

We have developed a proof of concept electrode design to covalently graft poly(methyl methacrylate) brushes directly to silicon thin film electrodes via surface-initiated atom transfer radical polymerization. This polymer layer acts as a stable artificial solid electrolyte interface that enables surface passivation despite large volume changes during cycling. Thin polymer layers (75 nm) improve average first cycle coulombic efficiency from 62.

View Article and Find Full Text PDF

We present a method to prepare shear thickening electrolytes consisting of silica nanoparticles in conventional liquid electrolytes with limited flocculation. These electrolytes rapidly and reversibly stiffen to solidlike behaviors in the presence of external shear or high impact, which is promising for improved lithium ion battery safety, especially in electric vehicles. However, in initial chemistries the silica nanoparticles aggregate and/or sediment in solution over time.

View Article and Find Full Text PDF

Solid polymer electrolytes, such as polyethylene oxide (PEO) based systems, have the potential to replace liquid electrolytes in secondary lithium batteries with flexible, safe, and mechanically robust designs. Previously reported PEO nanocomposite electrolytes routinely use metal oxide nanoparticles that are often 5-10 nm in diameter or larger. The mechanism of those oxide particle-based polymer nanocomposite electrolytes is under debate and the ion transport performance of these systems is still to be improved.

View Article and Find Full Text PDF

Using neutron reflectometry, we have determined the thickness and scattering length density profile of the electrode-electrolyte interface for the high-voltage cathode LiMn(1.5)Ni(0.5)O4 in situ at open circuit voltage and fully delithiated.

View Article and Find Full Text PDF

We report the first direct measurement of the extent of the spontaneous non-electrochemically driven reaction between a lithium ion battery electrode surface (Si) and a liquid electrolyte (1.2 M LiPF6-3 : 7 wt% ethylene carbonate : dimethyl carbonate). This layer is estimated to be 35 Å thick with a SLD of ∼ 4 × 10(-6) Å(-2) and likely originates from the consumption of the silicon surface.

View Article and Find Full Text PDF

Chemical vapor deposition (CVD) polymerization utilizes the delivery of vapor-phase monomers to form chemically well-defined polymeric films directly on the surface of a substrate. CVD polymers are desirable as conformal surface modification layers exhibiting strong retention of organic functional groups, and, in some cases, are responsive to external stimuli. Traditional wet-chemical chain- and step-growth mechanisms guide the development of new heterogeneous CVD polymerization techniques.

View Article and Find Full Text PDF

Initiated chemical vapor deposition (iCVD) of alternating copolymer thin films has been achieved for the first time. Copolymerization is desirable for maleic anhydride (Ma) since this monomer does not homopolymerize to an appreciable extent. At conditions where the observed deposition rates for styrene (S) and Ma homopolymers were only 0 and 5.

View Article and Find Full Text PDF