Publications by authors named "Wuzheng Zhu"

Mitochondria are dynamically changing organelles that maintain stable mitochondrial morphology, number, and function through constant fusion and division, a process known as mitochondrial dynamics, which is an important mechanism for mitochondrial quality control. Excessive fusion and division of mitochondria can lead to a homeostatic imbalance in mitochondrial dynamics, causing mitochondrial dysfunction, leading to cellular damage, and even death. The physiological functions of the kidney are mainly powered by mitochondria, and homeostatic imbalance in mitochondrial dynamics affects mitochondrial function and is closely related to renal diseases such as acute kidney injury and diabetic nephropathy.

View Article and Find Full Text PDF

Background And Purpose: Mitochondrial damage and oxidative stress are crucial contributors to the tubular cell injury and death in acute kidney injury. Novel therapeutic strategies targeting mitochondria protection and halting the progression of acute kidney injury are urgently needed. Honokiol is a small-molecule polyphenol that exhibits extraordinary cytoprotective effects, such as anti-inflammatory and anti-oxidative.

View Article and Find Full Text PDF

High levels of plasma free fatty acids (FFAs) lead to endothelial dysfunction (ED), which is involved in the pathogenesis of metabolic syndrome, diabetes, and atherosclerosis. Endoplasmic reticulum (ER) stress and endothelial-to-mesenchymal transition (EndMT) are demonstrated to be mechanistically related to endothelial dysfunction. Mesenchymal stem cells (MSCs) have exhibited an extraordinary cytoprotective effect on cellular lipotoxicity and vasculopathy.

View Article and Find Full Text PDF

Macrophage polarization toward the M1 phenotype and its subsequent inflammatory response have been implicated in the progression of diabetic complications. Despite adverse consequences of autophagy impairment on macrophage inflammation, the regulation of macrophage autophagy under hyperglycemic conditions is incompletely understood. Here, we report that the autophagy-lysosome system and mitochondrial function are impaired in streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-stimulated RAW 264.

View Article and Find Full Text PDF

Mitochondrial dysfunction and excessive mitochondrial reactive oxygen species (ROS) are fundamental contributors to endothelial injury in diabetic states. Mesenchymal stem cells (MSCs) have exhibited an extraordinary cytoprotective effect that extends to the modulation of mitochondrial homeostasis. However, the underlying mechanisms have not been clearly defined.

View Article and Find Full Text PDF

The aim of the present study was to assess the effects of dietary supplementation with epidermal growth factor (EGF)-expressing Saccharomyces cerevisiae on duodenal development in weaned piglets. In total, forty piglets weaned at 21-26 d of age were assigned to one of the five groups that were provided basic diet (control group) or diet supplemented with S. cerevisiae expressing either empty-vector (INVSc1(EV) group), tagged EGF (T-EGF) (INVSc1-TE(-) group), extracellular EGF (EE-EGF) (INVSc1-EE(+) group) or intracellular EGF (IE-EGF) (INVSc1-IE(+) group).

View Article and Find Full Text PDF

The identification of suitable reference genes is critical for obtaining reliable results from gene expression studies using quantitative real-time PCR (qPCR) because the expression of reference genes may vary considerably under different experimental conditions. In most cases, however, commonly used reference genes are employed in data normalization without proper validation, which may lead to incorrect data interpretation. Here, we aim to select a set of optimal reference genes for the accurate normalization of gene expression associated with intramuscular fat (IMF) deposition during development.

View Article and Find Full Text PDF

This paper reports the successful expression of a lactoferrin gene-obtained from the mammary gland tissue of Tibetan sheep-in the yeast Pichia pastoris GS115 using pPICZαA as the recombinant plasmid and α-factor signal sequence for secretion. The recombinant lactoferrin was purified by ammonium sulfate precipitation, ion-exchange column chromatography and gel-filtration chromatography, and it had a molecular mass of 76kDa. We obtained an expression yield of >60mgL(-1) and specific activity of 2533.

View Article and Find Full Text PDF