Based on complex adaptive system theory and information theory for investigating heterogeneous situations, this paper develops an outlier knowledge management framework based on three aspects-dimension, object, and situation-for dealing with extreme public health events. In the context of the COVID-19 pandemic, we apply advanced natural language processing (NLP) technology to conduct data mining and feature extraction on the microblog data from the Wuhan area and the imported case province (Henan Province) during the high and median operating periods of the epidemic. Our experiment indicates that the semantic and sentiment vocabulary of words, the sentiment curve, and the portrait of patients seeking help were all heterogeneous in the context of COVID-19.
View Article and Find Full Text PDF