Chinese perch (Siniperca chuatsi) is an important commercial fish species in China. Understanding the molecular mechanisms of growth and development of skeletal muscle is helpful for selection breeding and improving the growth rate of Chinese perch. We analyzed histological and transcriptomic differences in fast muscle of Chinese perch between 30 days post hatching (dph) and 60 dph using histological sections and high-throughput RNA-Seq.
View Article and Find Full Text PDFThe fusion of myoblasts is a crucial stage in the growth and development of skeletal muscle. is an important myoblast fusion factor that plays a crucial role in regulating myoblast fusion. However, the function of in economic fish during posthatching has been poorly studied.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2024
Cadmium (Cd) is a toxic heavy metal pollutant in the environment. Excessive Cd in water has toxic effects on fish, endangering their healthy growth and ultimately affecting the quality and safety of aquatic products. To evaluate the toxicity of excessive Cd to fish through potential oxidative damage, Siniperca chuatsi was exposed to Cd in water for 15 days.
View Article and Find Full Text PDFPhysiology disorders of the liver, as it is an important tissue in lipid metabolism, can cause fatty liver disease. The mechanism might be regulated by 17 circadian clock genes and 18 fat metabolism genes, together with a high-fat diet (HFD). Due to their rich nutritional and medicinal value, Chinese soft-shelled turtles () are very popular among the Chinese people.
View Article and Find Full Text PDFThis study aimed to investigate a detection method of enrofloxacin and ciprofloxacin to be avail for strictly supervising the quality and safety of aquatic products. The results displayed that the optimal extraction conditions for enrofloxacin and ciprofloxacin were the following five aspects: 15 g dosages of NaSO to dehydrate, 8‰ of acetonitrile and 50% hydrochloric acid to deproteinization, 2 mL dosages of n-hexane to degrease, 10 min of ultrasonic time, and 20 min of extraction (stand) time. Meanwhile, it was also obtained for the optimal detection performance indexes of the recovery, precision, and accuracy from the tests of , , and .
View Article and Find Full Text PDFFish skeletal muscle is composed of two anatomically and functionally different fiber layers, white or fast and red or slow muscles. Myosin, the major structural protein of fish skeletal muscle, contains multiple myosin heavy chain (MYH) isoforms involved in the high plasticity of muscle in response to varying functional demands and/or environmental changes. In this study, we comparatively assayed the cellular and ultrastructural feature of white and red skeletal muscles.
View Article and Find Full Text PDFAn eight-week feeding trial explored the mechanism that supplemented methionine (0 g/kg, 4 g/kg, 8 g/kg, and 12 g/kg) in a high-fat diet (120 g/kg fat) on intestinal lipid transportation and gut microbiota of (initial weight 25.03 ± 0.13 g) based on the diet (60 g/kg fat), named as Con, HFD+M0, HFD+M4, HFD+M8, and HFD+M12, respectively.
View Article and Find Full Text PDFAs an internal time-keeping mechanism, circadian rhythm plays crucial role in maintaining homoeostasis when in response to nutrition change; meanwhile, branched-chain amino acids (BCAA) in skeletal muscle play an important role in preserving energy homoeostasis during fasting. Previous results from our laboratory suggested that fasting can influence peripheral circadian rhythm and BCAA metabolism in fish, but the relationship between circadian rhythm and BCAA metabolism, and whether circadian rhythm regulates BCAA metabolism to maintain physiological homoeostasis during fasting remains unclear. This study shows that the expression of fifteen core clock genes as well as and is highly responsive to short-term fasting in fast muscle of , and the correlation coefficient between and expression is enhanced after fasting treatment.
View Article and Find Full Text PDFAn 8-week feeding trial was conducted using the rice field eel () with six isonitrogenous and isoenergetic experimental diets of basic feed supplemented with different levels of methionine (0, 2, 4, 6, 8, or 10 g/kg). This study built upon previous research findings that showed dietary methionine restriction (M0, 0 g/kg) inhibited hepatic fatty acid metabolism and intestinal fatty acid transportation, but both are improved by dietary supplementation with a suitable level of methionine (M8, 8 g/kg). Hence, M0 and M8 were selected to investigate how methionine regulates the gut microbiota and lipidomics of .
View Article and Find Full Text PDFIn skeletal muscle, autophagy regulates the development and growth of muscle fibres and maintains the normal muscle metabolism. Under starvation and refeeding conditions, the effect of reactive oxygen species (ROS) levels on skeletal muscle autophagy is still unclear, although the excessive accumulation of ROS has been shown to increase autophagy in cells. The purpose of this study was to explore the effects of starvation and diet after starvation on the autophagy of adult Chinese perch muscle, and to determine the level of ROS in the muscle.
View Article and Find Full Text PDFMethionine restriction reduces animal lipid deposition. However, the molecular mechanism underlying how the body reacts to the condition and regulates lipid metabolism remains unknown. In this study, a feeding trial was performed on rice field eel with six isonitrogenous and isoenergetic feeds that included different levels of methionine (0, 2, 4, 6, 8, and 10 g/kg).
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
September 2021
Fish skeletal muscles are composed of spatially well-separated fiber types, namely, red and white muscles with different physiological functions and metabolism. To compare the DNA methylation profiles of the two types of muscle tissues and identify potential candidate genes for the muscle growth and development under epigenetic regulation, genome-wide DNA methylation of the red and white muscle in Chinese perch Siniperca chuatsi were comparatively analyzed using bisulfate sequencing methods. An average of 0.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
September 2021
Fish skeletal muscles are composed of two distinct types, slow and fast muscles, and they play important roles in maintaining the body's movement and energy metabolism. The two types of muscle are easy to separate, so they are often used as the model system for studies on their physiological and functional characteristics. In this study, we revealed that the carbohydrate and lipid metabolic KEGG pathways are different between slow and fast muscles of Chinese perch with transcriptome analysis.
View Article and Find Full Text PDFThe branched-chain amino acids (BCAAs) play a key role in the energy metabolism of the muscle tissue and the Krüppel-like factor 15 (KLF15) as a transcription factor, which is a key regulator of BCAA metabolism in the skeletal muscle. This study assessed the effect of starvation for 0, 3, 7, and 15 days on BCAA metabolism in the skeletal muscle of Nile tilapia. The results showed that the expression of KLF15 showed a trend of increasing first and then decreasing during starvation, as well as the expression and activity of branched-chain aminotransferase 2 (BCAT2) and alanine aminotransferase (ALT).
View Article and Find Full Text PDFNrf2 is an important transcription factor involved in the antioxidant response and is widely expressed in animal tissues. The function of Nrf2 is regulated by its negative regulator Keap1 by inducing its cytoplasmic degradation. Recent studies have suggested that Nrf2 is also regulated post-transcriptionally via miRNAs.
View Article and Find Full Text PDFis an omnivorous cyprinid fish that is distributed widely in China. To investigate the adaptive evolution of , the muscle transcriptome was sequenced by Illumina HiSeq 4000 platform. A total of 80,447,367 reads were generated by next-generation sequencing.
View Article and Find Full Text PDFThe present study was performed to determine the effect of waterborne cadmium (Cd) exposure on oxidative stress, autophagy and mitochondrial dysfunction, and to explore the mechanism of Cd-induced liver damage in freshwater teleost Procypris merus. To this end, P. merus were exposed to waterborne 0, 0.
View Article and Find Full Text PDFThe branched-chain amino acids (BCAA) play an important role in muscle energy metabolism, and Krüppel-like factor 15 (KLF15) is an essential regulator of BCAA metabolism in muscle under nutritional deficiency. In this study, we analyzed the effect of normal feeding (starvation for 0 day), starvation for 3, 7, 10, 15 days, and refeeding for 7 days after 15 days of starvation on the expression of KLF15 and BCAA metabolism in muscle of Chinese soft-shelled turtles by a fasting-refeeding trial. The results showed that the level of KLF15 transcription was increased first and then decreased in muscle during short-term starvation, and the protein level was gradually increased.
View Article and Find Full Text PDFAutophagy is an important evolutionary conserved process in eukaryotic organisms for the turnover of intracellular substances. Recent studies revealed that autophagy displays circadian rhythms in mice and zebrafish. To date, there is no report focused on the rhythmic changes of autophagy in fish skeletal muscles upon nutritional deprivation.
View Article and Find Full Text PDFThe autophagic lysosomal protein degradation pathway is an evolutionarily conserved pathway, which utilizes lysosomes to degrade and to circulate cell components. Autophagy has been observed in many different types of cells, but its role in skeletal muscle protein degradation has not been thoroughly studied, especially in aquatic species. This study assessed the expression of antioxidant-related signaling genes and the effects of starvation on antioxidant capacity, reactive oxygen species (ROS) content, autophagy-related gene, and autophagosome formation in the skeletal muscle of juvenile Chinese perch after short-term starvation.
View Article and Find Full Text PDFAs molecular chaperones, heat shock proteins (HSPs) play essential roles in cells in response to stress conditions. Recent studies about immune functions of HSPs in fish have also been reported. In this study, based on the reported cDNA sequences of the four HSP genes, HSP70, HSC70, HSP90α and HSP90β, the temporal expression patterns of the four genes during embryonic development of dojo loach(Misgurnus anguillicaudatus) was assayed with qRT-PCR.
View Article and Find Full Text PDFGinkgo biloba leaf is widely used in traditional medicine in China. The present study aimed to illustrate the effects of dietary Ginkgo biloba leaf extract (GBLE) on growth performance and immune responses in common carp infected by Aeromonas hydrophila. Six different diets either not treated (control) or treated with 0.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
February 2020
The present study was performed to determine the effect of high fat diet in lipid accumulation, oxidative stress and autophagy, and to explore the underlying molecular mechanism of high fat diet induced hepatic oxidative damage in Chinese softshell turtle. To this end, the control group were fed a normal fat diet (NFD, 6.38% lipid) and the experimental group were bred high fat diet (HFD, 13.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
August 2019
An 8 week experiment was conducted to evaluate the effects of dietary fat on growth and on the accumulation of lipids and the expression of lipid metabolism-related microRNAs (miRNAs) and genes in grass carp (Ctenopharyngodon idella). Two diets (normal fat diet (NFD), 60 g/kg lipid content; high fat diet (HFD), 160 g/kg lipid content) were fed to triplicate groups of 35 fish [initial weight of (40.0 ± 0.
View Article and Find Full Text PDF